×

An information theoretic exploration of constrained MSSM. (English) Zbl 1509.81613

Summary: We discuss information theory as a tool to investigate constrained minimal supersymmetric Standard Model (CMSSM) in the light of observation of Higgs boson at the Large Hadron Collider. The entropy of the Higgs boson using its various detection modes has been constructed as a measure of the information and has been utilized to explore a wide range of CMSSM parameter space after including various experimental constraints from the LEP data, B-physics, electroweak precision observables and relic density of dark matter. According to our study while the lightest neutralino is preferred to have a mass around 1.92 TeV, the gluino mass is estimated to be around 7.44 TeV. The values of CMSSM parameters \(m_0\), \(m_{1/2}\), \(A_0\) and \(\tan \beta\) correspond to the most preferred scenario are found to be about 6 TeV, 3.6 TeV, \(-6.9\) TeV and 36.8 respectively.

MSC:

81V22 Unified quantum theories
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
70H45 Constrained dynamics, Dirac’s theory of constraints
81V73 Bosonic systems in quantum theory
81U35 Inelastic and multichannel quantum scattering
81V35 Nuclear physics
81V10 Electromagnetic interaction; quantum electrodynamics
81V15 Weak interaction in quantum theory
83C56 Dark matter and dark energy

Software:

SOFTSUSY
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aad, G., Phys. Rev. Lett., 114, Article 191803 pp. (2015)
[2] Djouadi, A., Phys. Rep., 457, 1-216 (2008)
[3] Tata, X.
[4] Martin, S. P., Adv. Ser. Dir. High Energy Phys., 21, 1-153 (2010)
[5] Drees, M.
[6] Fayet, P., Adv. Ser. Dir. High Energy Phys., 26, 397-454 (2016) · Zbl 1360.81322
[7] Canepa, A., Rev. Phys., 4, Article 100033 pp. (2019)
[8] Allanchach, B. C., CERN Yellow Rep. School Proc., 6, 113-144 (2019)
[9] Aitchison, I. J.R.
[10] Djouadi, A., Phys. Rep., 459, 1-241 (2008)
[11] Tanabashi, M., Phys. Rev. D, 98, 3, Article 030001 pp. (2018)
[12] Dawson, S.
[13] Heinemeyer, S.; Hollik, W.; Weiglein, G., Eur. Phys. J. C, 9, 343-366 (1999)
[14] Draper, P.; Rzehak, H., Phys. Rep., 619, 1-24 (2016)
[15] Ellis, J.; Olive, K. A., Eur. Phys. J. C, 72, 2005 (2012)
[16] Buchmueller, O., Eur. Phys. J. C, 71, 1722 (2011)
[17] Bechtle, P., J. High Energy Phys., 06, Article 098 pp. (2012)
[18] Fowlie, A., Phys. Rev. D, 90, Article 015010 pp. (2014)
[19] Fowlie, A.; Kalinowski, A.; Kazana, M.; Roszkowski, L.; Tsai, Y. L.S., Phys. Rev. D, 85, Article 075012 pp. (2012)
[20] Allanach, B. C.; Khoo, T. J.; Lester, C. G.; Williams, S. L., J. High Energy Phys., 06, Article 035 pp. (2011)
[21] d’Enterria, D.
[22] Alves, A.; Dias, A. G.; da Silva, R., Physica A, 420, 1-7 (2015)
[23] Alves, A.; Dias, A. G.; da Silva, R., Nucl. Phys. B, 959, Article 115137 pp. (2020) · Zbl 1473.81238
[24] Alves, A.; Dias, A. G.; Silva, R., Braz. J. Phys., 47, 4, 426-435 (2017)
[25] Carrasco Millán, P.; García-Ferrero, M.Á.; Llanes-Estrada, F. J.; Porras Riojano, A.; Sánchez García, E. M., Nucl. Phys. B, 930, 583-596 (2018)
[26] Llanes-Estrada, F. J.; Millan, P. C.; Porras Riojano, A.; Sánchez García, E. M.; García Ferrero, M.Á., PoS, EPS-HEP2017, 740 (2017)
[27] Ensslin, T. A.; Frommert, M.; Kitaura, F. S., Phys. Rev. D, 80, Article 105005 pp. (2009)
[28] Pinho, A. M.; Reischke, R.; Teich, M.; Schäfer, B. M.
[29] Pandey, B., Mon. Not. R. Astron. Soc. Lett., 462, 2, 1630-1641 (2016)
[30] Bernardini, A. E.; da Rocha, R., Phys. Lett. B, 762, 107-115 (2016) · Zbl 1390.81637
[31] Jizba, P.; Korbel, J., Phys. Rev. Lett., 122, 12, Article 120601 pp. (2019)
[32] Wang, R.; Chen, X., Phys. Rev. D, 91, Article 054026 pp. (2015)
[33] Hamada, Y.; Kawai, H.; Kawana, K., PTEP, 2015, Article 033B06 pp. (2015)
[34] Krishna, P. B.; Mathew, T. K., Phys. Rev. D, 99, 2, Article 023535 pp. (2019)
[35] Nosek, D.; Ebr, J.; Vícha, J.; Trávníček, P.; Nosková, J., Astropart. Phys., 76, 9-18 (2016)
[36] Fang, X.; Guo, M.; Jing, J., J. High Energy Phys., 08, Article 163 pp. (2016) · Zbl 1390.83158
[37] Quznetsov, G.
[38] Shannon, C. E., Bell Syst. Tech. J., 27, 379-423 (1948) · Zbl 1154.94303
[39] Jaynes, E. T., Phys. Rev., 106, 620-630 (1957) · Zbl 0084.43701
[40] Cover, T. M.; Thomas, J. A. (2006), Wiley-Interscience · Zbl 1140.94001
[41] Mateev, P., Theory Probab. Appl., 23, 1, 188-190 (1978) · Zbl 0423.60015
[42] Cichoń, Jacek; Golebiewski, Zbigniew, (DMTCS Proceedings AQ, 23rd International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms. DMTCS Proceedings AQ, 23rd International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms, AofA’12, Montreal, Canada (2012)), 179-190, hal-01197242 · Zbl 1296.94054
[43] Djouadi, A.; Kalinowski, J.; Muehlleitner, M.; Spira, M., Comput. Phys. Commun., 238, 214-231 (2019) · Zbl 07683969
[44] Athron, P.; Balazs, C.; Farmer, B.; Fowlie, A.; Harries, D.; Kim, D., J. High Energy Phys., 10, Article 160 pp. (2017)
[45] Balazs, C.; Buckley, A.; Carter, D.; Farmer, B.; White, M., Eur. Phys. J. C, 73, 2563 (2013)
[46] Fowlie, A.; Kazana, M.; Kowalska, K.; Munir, S.; Roszkowski, L.; Sessolo, E. M.; Trojanowski, S.; Tsai, Y. L.S., Phys. Rev. D, 86, Article 075010 pp. (2012)
[47] Allanach, B. C.; Cranmer, K.; Lester, C. G.; Weber, A. M., J. High Energy Phys., 08, Article 023 pp. (2007)
[48] Kane, G. L.; Kolda, C. F.; Roszkowski, L.; Wells, J. D., Phys. Rev. D, 49, 6173-6210 (1994)
[49] Allanach, B. C., Comput. Phys. Commun., 143, 305-331 (2002) · Zbl 1009.81588
[50] Hahn, T.; Heinemeyer, S.; Hollik, W.; Rzehak, H.; Weiglein, G., Phys. Rev. Lett., 112, 14, Article 141801 pp. (2014)
[51] Bahl, H.; Hahn, T.; Heinemeyer, S.; Hollik, W.; Paßehr, S.; Rzehak, H.; Weiglein, G., Comput. Phys. Commun., 249, Article 107099 pp. (2020) · Zbl 07678499
[52] Arbey, A.; Mahmoudi, F.; Robbins, G., Comput. Phys. Commun., 239, 238-264 (2019) · Zbl 07684950
[53] Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A., Comput. Phys. Commun., 174, 577-604 (2006) · Zbl 1196.81049
[54] Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A., Comput. Phys. Commun., 149, 103-120 (2002) · Zbl 1196.81048
[55] Schael, S., Eur. Phys. J. C, 47, 547-587 (2006)
[56] Nakamura, K., J. Phys. G, 37, Article 075021 pp. (2010)
[57] Asner, D.
[58] Aaij, R., Phys. Rev. Lett., 118, 19, Article 191801 pp. (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.