×

The switch point algorithm. (English) Zbl 1468.49029

Summary: The switch point algorithm is a new approach for solving optimal control problems whose solutions are either singular or bang-bang or both singular and bang-bang, and which possess a finite number of jump discontinuities in an optimal control at the points in time where the solution structure changes. Problems in this class can often be reduced to an optimization over the switching points. Formulas are derived for the derivative of the objective with respect to the switch points, the initial costate, and the terminal time. All these derivatives can be computed simultaneously in just one integration of the state and costate dynamics. Hence, gradient-based unconstrained optimization techniques, including the conjugate gradient method or quasi-Newton methods, can be used to compute an optimal control. The performance of the algorithm is illustrated using test problems with known solutions and comparisons with other algorithms from the literature.

MSC:

49M25 Discrete approximations in optimal control
49M37 Numerical methods based on nonlinear programming
65K05 Numerical mathematical programming methods
90C30 Nonlinear programming
49J30 Existence of optimal solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)

Software:

Ipopt; GPOPS
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] A. A. Agrachev, G. Stefani, and P. Zezza, Strong optimality for a bang-bang trajectory, SIAM J. Control Optim., 41 (2002), pp. 991-1014. · Zbl 1020.49021
[2] G. Aly, The computation of optimal singular control, Internat. J. Control, 28 (1978), pp. 681-688. · Zbl 0396.49021
[3] G. M. Anderson, An indirect numerical method for the solution of a class of optimal control problems with singular arcs, IEEE Trans. Automat. Control, (1972), pp. 363-365. · Zbl 0265.49010
[4] O. Andrés-Martínez, L. T. Biegler, and A. Flores-Tlacuahuac, An indirect approach for singular optimal control problems, Computers Chem. Eng., 139 (2020), 106923.
[5] O. Andrés-Martínez, A. Flores-Tlacuahuac, S. Kameswaran, and L. T. Biegler, An efficient direct/indirect transcription approach for singular optimal control, Amer. Inst. Chemical Engineers J., 65 (2019), pp. 937-946.
[6] S. Atkins, M. Aghaee, M. Martcheva, and W. Hager, Solving Singular Control Problems in Mathematical Biology, Using PASA, arXiv:2010.06744, 2020.
[7] J. Banga, R. Irizarry-Rivera, and W. D. Seider, Stochastic optimization for optimal and model-predictive control, Computers Chem. Eng., 22 (1998), pp. 603-612.
[8] M. Bell and R. Sargent, Optimal control of inequality constrained DAE systems, Computers Chem. Eng., 24 (2000), pp. 2385-2404.
[9] J. T. Betts, Practical Methods for Optimal Control Using Nonlinear Programming, 2nd ed., SIAM, Philadelphia, 2010. · Zbl 1189.49001
[10] J. F. Bonnans, P. Martinon, and E. Trélat, Singular arcs in the generalized Goddard’s problem, J. Optim. Theory Appl., 139 (2008), pp. 439-461. · Zbl 1159.49027
[11] A. Bressan, Viscosity Solutions of Hamilton-Jacobi Equations and Optimal Control Problems, Tech. report, Penn State University, State College, PA, 2011, https://www.math.psu.edu/bressan/PSPDF/HJ-lnotes.pdf.
[12] A. E. Bryson and Y.-C. Ho, Applied Optimal Control, Hemisphere Publishing, New York, 1975.
[13] M. Caponigro, R. Ghezzi, B. Piccoli, and E. Trélat, Regularization of chattering phenomena via bounded variation controls, IEEE Trans. Automat. Control, 63 (2018), pp. 2046-2060. · Zbl 1423.49037
[14] W. Chen and L. T. Biegler, Nested direct transcription optimization for singular optimal control problems, Amer. Inst. Chemical Engineers J., 62 (2016), pp. 3611-3627.
[15] W. Chen, Y. Ren, G. Zhang, and L. T. Biegler, A simultaneous approach for singular optimal control based on partial moving grid, Amer. Inst. Chemical Engineers J., 65 (2019), e16584.
[16] S. Dadebo and K. McAuley, Dynamic optimization of constrained chemical engineering problems using dynamic programming, Computers Chem. Eng., 19 (1995), pp. 513-525.
[17] C. L. Darby, W. W. Hager, and A. V. Rao, Direct trajectory optimization using a variable low-order adaptive pseudospectral method, J. Spacecraft Rockets, 48 (2011), pp. 433-445.
[18] C. L. Darby, W. W. Hager, and A. V. Rao, An hp-adaptive pseudospectral method for solving optimal control problems, Optim. Control Appl. Meth., 32 (2011), pp. 476-502, https://doi.org/10.1002/oca.957. · Zbl 1266.49066
[19] J. R. Dormand and P. J. Prince, A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math., 6 (1980), pp. 19-23. · Zbl 0448.65045
[20] Z. Foroozandeh, M. Shamsi, V. Azhmyakov, and M. Shafiee, A modified pseudospectral method for solving trajectory optimization problems with singular arc, Math. Methods Appl. Sci., 40 (2017), pp. 1783-1793. · Zbl 1362.49019
[21] Z. Foroozandeh, M. Shamsi, and M. d. R. de Pinho, A mixed-binary non-linear programming approach for the numerical solution of a family of singular control problems, Internat. J. Control, 92 (2019), pp. 1551-1566, https://doi.org/10.1080/00207179.2017.1399216. · Zbl 1418.49033
[22] Z. Foroozandeh, M. Shamsi, and M. d. R. De Pinho, A hybrid direct-indirect approach for solving the singular optimal control problems of finite and infinite order, Iran. J. Sci. Technol. Trans. Sci., 42 (2018), pp. 1545-1554. · Zbl 1397.49041
[23] R. H. Goddard, A method of reaching extreme altitudes, Smithsonian Institution Misc. Collection, 71 (1919).
[24] D. J. Gunn and W. J. Thomas, Mass transport and chemical reaction in multifunctional catalyst systems, Chem. Eng. Sci., 20 (1965), pp. 89-100.
[25] W. W. Hager, H. Hou, S. Mohapatra, A. V. Rao, and X.-S. Wang, Convergence rate for a Radau hp-collocation method applied to constrained optimal control, Comput. Optim. Appl., 74 (2019), pp. 274-314. · Zbl 1427.49038
[26] W. W. Hager and R. Rostamian, Optimal coatings, bang-bang controls, and gradient techniques, Optim. Control Appl. Methods, 8 (1987), pp. 1-20. · Zbl 0614.49010
[27] W. W. Hager and H. Zhang, An active set algorithm for nonlinear optimization with polyhedral constraints, Sci. China Math., 59 (2016), pp. 1525-1542. · Zbl 1349.90619
[28] R. Irizarry, A generalized framework for solving dynamic optimization problems using the artificial chemical process paradigm: Applications to particulate processes and discrete dynamic systems, Chem. Eng. Sci., 60 (2005), pp. 5663-5681.
[29] R. Jackson, Optimal use of mixed catalysts for two successive chemical reactions, J. Optim. Theory Appl., 2 (1968), pp. 27-39.
[30] D. H. Jacobon, S. B. Gershwin, and M. M. Lele, Computation of optimal singular controls, IEEE Trans. Automat. Control, 15 (1970), pp. 67-73.
[31] G. Li and X. Liu, Comments on “optimal use of mixed catalysts for two successive chemical reactions,” J. Optim. Theory Appl., 165 (2015), pp. 678-692. · Zbl 1327.35382
[32] F. Liu, W. W. Hager, and A. V. Rao, Adaptive mesh refinement method for optimal control using nonsmoothness detection and mesh size reduction, J. Franklin Inst., 352 (2015), pp. 4081-4106. · Zbl 1395.93303
[33] F. Liu, W. W. Hager, and A. V. Rao, Adaptive mesh refinement method for optimal control using decay rates of Legendre polynomial coefficients, IEEE Trans. Control Sys. Tech., 26 (2018), pp. 1475-1483.
[34] X. Liu, L. Chen, and Y. Hu, Solution of chemical dynamic optimization using the simultaneous strategies, Chinese J. Chem. Eng., 21 (2013), pp. 55-63.
[35] F. S. Lobato, V. Steffen, and A. J. S. Neto, Solution of singular optimal control problems using the improved differential evolution algorithm, J. Artificial Intelligence Soft Computing Res., 1 (2011), pp. 195-206.
[36] P. Martinon, F. Bonnans, J. Laurent-Varin, and E. Trélat, Numerical study of optimal trajectories with singular arcs for an Ariane 5 launcher, J. Guid. Control Dyn., 32 (2009), pp. 51-55.
[37] H. Maurer, Numerical solution of singular control problems using multiple shooting techniques, J. Optim. Theory Appl., 18 (1976), pp. 235-257. · Zbl 0302.65063
[38] H. Maurer, C. Büskens, J.-H. R. Kim, and C. Y. Kaya, Optimization methods for the verification of second order sufficient conditions for bang-bang controls, Optim. Control Appl. Methods, 26 (2005), pp. 129-156.
[39] N. P. Osmolovskii and H. Maurer, Equivalence of second order optimality conditions for bang-bang control problems. Part 2: Proofs, variational derivatives and representations, Control Cybernet., 36 (2007), pp. 5-45. · Zbl 1293.49043
[40] M. A. Patterson, W. W. Hager, and A. V. Rao, A \(ph\) mesh refinement method for optimal control, Optim. Control Appl. Methods, 36 (2015), pp. 398-421. · Zbl 1329.49048
[41] D. Pham, Q. T. Pham, A. Ghanbarzadeh, and M. Castellani, Dynamic optimisation of chemical engineering processes using the bees algorithm, IFAC Proc. Vol., 41 (2008), pp. 6100-6105.
[42] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, John Wiley, New York, 1962. · Zbl 0102.32001
[43] J. Rajesh, K. Gupta, H. S. Kusumakar, V. Jayaraman, and B. Kulkarni, Dynamic optimization of chemical processes using ant colony framework, Computers Chemistry, 25 (2001), pp. 583-95.
[44] A. V. Rao, D. A. Benson, C. Darby, M. A. Patterson, C. Françolin, I. Sanders, and G. T. Huntington, Algorithm 902: GPOPS, A MATLAB software for solving multiple-phase optimal control problems using the Gauss pseudospectral method, ACM Trans. Math. Software, 37 (2010), pp. 1-39, https://doi.org/10.1145/1731022.1731032. · Zbl 1364.65131
[45] L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259-268. · Zbl 0780.49028
[46] H. Schättler and U. Ledzewicz, Geometric Optimal Control, Springer, New York, 2012. · Zbl 1276.49002
[47] P. Tanartkit and L. Biegler, A nested, simultaneous approach for dynamic optimization problems-II: the outer problem, Computers Chem. Eng., 21 (1997), pp. 735-741.
[48] V. Vassiliadis, Computational Solution of Dynamic Optimization Problems with General Differential-Algebraic Constraints, Ph.D. thesis, Department of Chemical Engineering and Chemical Technology, Imperial College, London, 1993.
[49] G. Vossen, Numerische Lösungsmethoden, hinreichende Optimalitätsbedingungen und Sensitivität-sanalyse für optimale bang-bang und singuläre Steuerungen, Ph.D. thesis, Universität Münster, Germany, 2006.
[50] G. Vossen, Switching time optimization for bang-bang and singular controls, J. Optim. Theory Appl., 144 (2010), pp. 409-429. · Zbl 1185.49022
[51] G. Vossen, Switching Time Optimization for Bang-Bang and Singular Controls: Variational Derivatives and Applications, Tech. rep., RWTH Aachen University, Germany, 2010, https://www.hs-niederrhein.de/maschinenbau-verfahrenstechnik/fachbereich/personenseite-vossen. · Zbl 1185.49022
[52] A. Wächter and L. T. Biegler, On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming, Math. Program., 106 (2006), pp. 25-57. · Zbl 1134.90542
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.