×

Estimation of risk measures from heavy tailed distributions. (English) Zbl 1499.62375


MSC:

62P05 Applications of statistics to actuarial sciences and financial mathematics
62G05 Nonparametric estimation
62G32 Statistics of extreme values; tail inference
91G70 Statistical methods; risk measures
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] P. Artzner, F. Delbaen, J. M. Eber and D. Heath, Coherent measures of risk, Mathematical Finance 9 (1999), 203-228. · Zbl 0980.91042
[2] J. Beirlant, G. Dierckx, M. Goegebeur and G. Matthys, Tail index estimation and exponential regression model, Extremes 2 (1999), 177-200. · Zbl 0947.62034
[3] J. Beirlant, G. Dierckx, A. Guillou and C. Starica, On exponential representations of log-spacings of extreme order statistics, Extremes 5 (2002), 157-180. · Zbl 1036.62040
[4] J. Beirlant, F. Figueiredo, I. Gomes and B. Vandewalle, Improved reduced-bias tail index and quantile estimators, Journal of Statistical Planning and Inference 138(6) (2008), 1851-1870. · Zbl 1131.62041
[5] A. Balkema and L. de Haan, Limit laws of order statistics, Colloquia Math. Soc. J. Bolyai, 11, Limit Theorems of Probability, P. Révész, ed., Amsterdam: North-Holland, 1975, pp. 17-22. · Zbl 0313.62020
[6] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1987. · Zbl 0617.26001
[7] B. Brahimi, D. Meraghni and A. Necir, Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses, Insurance: Mathematics and Economics 9(3) (2011), 325-334. · Zbl 1229.91155
[8] B. Brahim, D. Meraghni, A. Necir and D. Yahia, A bias-reduced estimator for the mean of a heavy-tailed distribution with an infinite, 2012. https://arxiv.org/abs/1201.1578
[9] B. Brahimi, F. Meddi and A. Necir, Bias-corrected estimation in distortion risk premiums for heavy-tailed losses, Afrika Statistika 7 (2012), 474-490. · Zbl 1258.91095
[10] V. Brazauskas, B. Jones, M. Puri and R. Zitikis, Estimating conditional tail expectation with actuarial applications in view, Journal of Statistical Planning and Inference 138 (2008) 3590-3604. · Zbl 1152.62027
[11] M. Centeno and Andrade e Silva, Applying the proportional hazard premium calculation principle, Astin Bulletin 3 (2005), 409-425. · Zbl 1097.62119
[12] S. Cosörgő, P. Deheuvels and D.M. Mason, Kernel estimates of the tail index of a distribution, Annals of Statistics 13 (1985), 1050-1077. · Zbl 0588.62051
[13] M. Csörgo, S. Csörgo, L. Horváth and D. M. Mason, Weighted empirical and quantile processes, Annals of Probability 14 (1986), 31-85. · Zbl 0589.60029
[14] L. de Haan and A. Ferreira, Extreme Value Theory: An Introduction, Springer, 2006. · Zbl 1101.62002
[15] E. Deme, S. Girard and A. Guillou, Reduced-bias estimator of the proportional hazard premium for heavy-tailed distributions, Insurance: Mathematics and Economics 52 (2013), 550-559. · Zbl 1284.62211
[16] E. H. Deme, S. Girard and A. Guillou, Reduced-biased estimators of the conditional tail expectation for heavy-tailed distributions, Mathematical Statistics and Limit Theorems, Springer, 2015, pp. 105-123. · Zbl 1320.62068
[17] M. Denuit and A. Charpentier, Mathématiques de l’assurance non-vie : Principes fondamentaux de théorie du risque, Tome I, Economica, Paris, 2004.
[18] A. Feuerverger and P. Hall, Estimating a tail exponent by modelling departure from a Pareto distribution, Annals of Statistics 27 (1999), 760-781. · Zbl 0942.62059
[19] R. Fisher and L. Tippet, Limiting forms of the frequency distribution of the largest or smallest member of a sample, Proceedings of the Cambridge Philosophical Society 24 (1928), 180-190. · JFM 54.0560.05
[20] J. L. Geluk and L. de Haan, Regular Variation, Extensions and Tauberian Estimation of Risk Measures from Heavy Tailed Distributions 79
[21] Theorems, CWI Tracts, vol. 40, Stichting Mathematisch Centrum, Amsterdam, The Netherlands, 1987. · Zbl 0624.26003
[22] M. I. Gomes and M. Martins, Asymptotically unbiased estimators of the tail index based on external estimation of the second order parameter, Extremes 5 (2002), 5-31. · Zbl 1037.62044
[23] M. I. Gomes and D. Pestana, A sturdy reduced-bias extreme quantile (VaR) estimator, Journal of the American Statistical Association 102 (2007), 280-292. · Zbl 1284.62300
[24] M. J. Goovaerts, F. de Vlyder and J. Haezendonck, Insurance Premiums: Theory and Applications, North Holland, Amsterdam, 1984. · Zbl 0532.62082
[25] B. M. Hill, A simple approach to inference about the tail of a distribution, Annals of Statistics 3 (1975), 1136-1174. · Zbl 0323.62033
[26] B. L. Jones and R. Zitikis, Empirical estimation of risk premiums and related quantities, North American Actuarial Journal 7 (2003), 44-54. · Zbl 1084.62537
[27] B. L. Jones and R. Zitikis, Testing for the order risk measures: application of L-statistics in actuarial science, Metron 63 (2005), 193-211. · Zbl 1416.62587
[28] B. L. Jones and R. Zitikis, Risk measures, distortion parameters and their empirical estimation, Insurance: Mathematics and Economics 41(2) (2007), 279-297. · Zbl 1193.91065
[29] D. Li, L. Peng and J. Yang, Bias reduction for high quantile, J. Statist. Planning Inference 140(9) (2010), 2439-2441. · Zbl 1188.62166
[30] D. B. Madan and W. Schoutens, Conic Financial markets and corporate finance, 2010. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1547022
[31] G. Matthys, E. Delafosse, A. Guillou and J. Beirlant, Estimating catastrophic quantile levels for heavy-tailed distributions, Insurance: Mathematic and Economics 34 (2004), 517-537. · Zbl 1188.91237
[32] G. Matthys and J. Beirlant, Estimating the extreme value index and high quantiles with exponential regression models, Statistica Sinica 13 (2003) 853-880. · Zbl 1028.62038
[33] D. M. Mason, Laws of the large numbers for sums of extreme values, Annals of Probability 10 (1982), 259-297.
[34] A. Necir and K. Boukhetala, Estimating the risk adjusted premium of the largest claims reinsurance covers, Proceeding in Computational Statistics, Jaromir Antoch, ed., Physica, Heidelberg, 2004, pp. 1577-1584.
[35] A. Necir, D. Meraghni and F. Meddi, Statistical estimate of the proportional hazard premium of loss, Scandinavian Actuarial Journal 3 (2007), 147-161. · Zbl 1150.91027
[36] A. Necir and D. Meraghni, Empirical estimation of the proportional hazard premium for heavy-tailed claim amounts, Insurance: Mathematics and Economics 45 (2009), 49-58. · Zbl 1231.91221
[37] A. Necir, A. Rassoul and R. Zitikis, Estimating the conditional tail expectation in the case of heavy-tailed losses, Journal of Probability and Statistics 2010, Art. ID 596839, 17 pp. · Zbl 1200.91142
[38] A. Necir, D. Meraghni and F. Meddi, Statistical estimate of the proportional hazard premium of loss, Scandinavian Actuarial Journal 3 (2007), 147-161. · Zbl 1150.91027
[39] L. Peng, Estimating the mean of a heavy tailed distribution, Statist. Probab. Lett. 52(3) (2001), 255-264. · Zbl 0981.62041
[40] R. D. Reiss and M. Thomas, Statistical Analysis of Extreme Values: with Applications to Insurance, Finance, Hydrology and Other Fields, 3rd ed., Birkhäuser, 2007. · Zbl 1122.62036
[41] G. Shorack and J. Wellner, Empirical Processes with Applications to Statistics, John Wiley Sons, New York, 1986. · Zbl 1170.62365
[42] B. Vandewalle and J. Beirlant, On univariate extreme value statistics and the estimation of reinsurance premiums, Insurance: Mathematics and Economics 38 (2006), 441-459. · Zbl 1168.62392
[43] S. S. Wang, Premium calculation by transforming the layer premium density, Astin Bulletin 26 (1996), 71-92.
[44] S. Wang, Insurance pricing and increased limits ratemaking by proportional hazard transforms, Insurance: Mathematics and Economics (17) (1995), 43-54. · Zbl 0837.62088
[45] I. Weissman, Estimation of parameters and larges quantiles based on the k largest observations, Journal of American Statistical Association 73 (1958), 812-815. · Zbl 0397.62034
[46] Julia Lynn Wirch and Mary R. Hardy, A synthesis of risk measures for capital adequacy, Insurance: Mathematics and Economics 25 (1999), 337-347. · Zbl 0951.91032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.