×

Mathematical morphology on the triangular grid: the strict approach. (English) Zbl 1497.68538

Summary: Mathematical morphology provides various tools for image analysis. The two basic operations, dilation and erosion, are based on translations with the help of a given structural element (another image of the grid). In contrast to the case of discrete subgroups of \(\mathbb{R}^n\), the triangular grid is not closed under translations; therefore, we use a restriction for the structural elements. Namely, we allow only those trixels (triangle pixels) to be in the structural elements which represent vectors such that the grid is closed under translations by these vectors. We prove that both strict dilation and erosion have nice properties. Strict opening and closing have also been defined by combining strict dilation and erosion.

MSC:

68U10 Computing methodologies for image processing
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. Abdalla and B. Nagy, Concepts of binary morphological operations dilation and erosion on the triangular grid, in Computational Modeling of Objects Presented in Images, Fundamentals, Methods, and Applications, R. P. Barneva, V. E. Brimkov, and J. M. R. S. Tavares, eds., Lecture Notes in Comput. Sci. 10149, Springer, Berlin, 2017, pp. 89-104, https://doi.org/10.1007/978-3-319-54609-4_7.
[2] M. Abdalla and B. Nagy, Dilation and erosion on the triangular tessellation: An independent approach, IEEE Access, 6 (2018), pp. 23108-23119, https://doi.org/10.1109/ACCESS.2018.2827566.
[3] K. Abuhmaidan and B. Nagy, Non-bijective translations on the triangular plane, in 2018 IEEE 16th World Symposium on Applied Machine Intelligence and Informatics (SAMI 2018), IEEE, New York, 2018, pp. 183-188, https://doi.org/10.1109/SAMI.2018.8324836.
[4] K. Abuhmaidan and B. Nagy, Bijective, non-bijective and semi-bijective translations on the triangular plane, Mathematics, 8 (2020), 29, https://doi.org/10.3390/math8010029.
[5] G. J. F. Banon and J. Barrera, Minimal representations for translation-invariant set mappings by mathematical morphology, SIAM J. Appl. Math., 51 (1991), pp. 1782-1798, https://doi.org/10.1137/0151091. · Zbl 0742.68085
[6] G. Borgefors, Distance transformations on hexagonal grids, Pattern Recognit. Lett., 9 (1989), pp. 97-105, https://doi.org/10.1016/0167-8655(89)90042-1.
[7] G. Borgefors, Discretization-Problems and solutions, in Les Houches session LVIII: Progress in Picture Processing, H. Maître and J. Zinn-Justin, eds., vol. Les Houches, Session 58, Elsevier Science, Amsterdam, 1996, pp. 1-80.
[8] G. Borgefors, I. Nyström, and G. Sanniti di Baja, Discrete skeletons from distance transforms in 2D and 3D, in Medial Representations: Mathematics, Algorithms and Applications, K. Siddiqi and S. M. Pizer, eds., Comput. Imaging Vision 37, Springer, Berlin, 2008, pp. 155-190, https://doi.org/10.1007/978-1-4020-8658-8_5. · Zbl 1153.68522
[9] W. Burger and M. J. Burge, Principles of Digital Image Processing: Fundamental Techniques, Springer, Berlin, 2010. · Zbl 1187.68648
[10] E. S. E. Deutsch, Thinning algorithms on rectangular, hexagonal, and triangular arrays, Commun. ACM, 15 (1972), pp. 827-837, https://doi.org/10.1145/361573.361583.
[11] G. P. Dinneen, Programming pattern recognition, in Western Joint Computer Conference, AFIPS ’55 (Western), ACM, New York, 1955, pp. 94-100, https://doi.org/10.1145/1455292.1455311.
[12] E. Dougherty, Mathematical Morphology in Image Processing, CRC Press, Boca Raton, FL, 1992.
[13] M. Dutt, E. Andres, and G. Largeteau-Skapin, Characterization and generation of straight line segments on triangular cell grid, Pattern Recognit. Lett., 103 (2018), pp. 68-74, https://doi.org/10.1016/j.patrec.2018.01.009.
[14] P. K. Ghosh and K. Deguchi, Mathematics of Shape Description: A Morphological Approach to Image Processing and Computer Graphics, Wiley, New York, 2009. · Zbl 1152.68054
[15] J. Gilles, G. Tran, and S. Osher, 2d empirical transforms. Wavelets, ridgelets, and curvelets revisited, SIAM J. Imaging Sci., 7 (2014), pp. 157-186, https://doi.org/10.1137/130923774. · Zbl 1295.42022
[16] M. J. E. Golay, Hexagonal parallel pattern transformations, IEEE Trans. Comput., 18 (1969), pp. 733-740, https://doi.org/10.1109/T-C.1969.222756.
[17] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed., Prentice Hall, Upper Saddle River, NJ, 2006.
[18] H. J. A. M. Heijmans and J. Roerdink, Mathematical Morphology and Its Applications to Image and Signal Processing, Springer, Berlin, 1998. · Zbl 0894.00056
[19] H. J. A. M. Heijmans and C. Ronse, The algebraic basis of mathematical morphology I. Dilations and erosions, Comp. Vis. Graph. Image Process., 50 (1990), pp. 245-295, https://doi.org/10.1016/0734-189X(90)90148-O. · Zbl 0788.68158
[20] P. Kardos and K. Palágyi, Topology preservation on the triangular grid, Ann. Math. Artif. Intell., 75 (2015), pp. 53-68, https://doi.org/10.1007/s10472-014-9426-6. · Zbl 1325.65034
[21] R. Kirsch, Experiments in processing life motion with a digital computer, in Proceedings of the Eastern Joint Computer Conference, ACM, New York, 1957, pp. 221-229.
[22] C. O. Kiselman, Elements of Digital Geometry, Mathematical Morphology, and Discrete Optimization, manuscript, 2020.
[23] T. Lukic and B. Nagy, Deterministic discrete tomography reconstruction by energy minimization method on the triangular grid, Pattern Recognit. Lett., 49 (2014), pp. 11-16, https://doi.org/10.1016/j.patrec.2014.05.014.
[24] P. Maragos, Representations for morphological image operators and analogies with linear operators, Adv. Imaging Electron Phys., 177 (2013), pp. 45-187.
[25] G. Matheron, Random Sets and Integral Geometry, Wiley, New York, 1975. · Zbl 0321.60009
[26] H. Minkowski, Volumen und Oberfläche, Math. Ann., 57 (1903), pp. 447-495. · JFM 34.0649.01
[27] B. Nagy, Finding shortest path with neighbourhood sequences in triangular grids, in Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis, 2001 (ISPA 2001), IEEE, New York, 2001, pp. 55-60, https://doi.org/10.1109/ISPA.2001.938603.
[28] B. Nagy, A family of triangular grids in digital geometry, in Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis, 2003 (ISPA 2003), Vol. 1, IEEE, New York, 2003, pp. 101-106, https://doi.org/10.1109/ISPA.2003.1296876.
[29] B. Nagy, Generalized triangular grids in digital geometry, Acta Math. Acad. Paedagog. Nyházi., 20 (2004), pp. 63-78. · Zbl 1060.52502
[30] B. Nagy, Isometric transformations of the dual of the hexagonal lattice, in Proceedings of the 6th International Symposium on Image and Signal Processing and Analysis, 2009 (ISPA 2009), IEEE, New York, 2009, pp. 432-437, https://doi.org/10.1109/ISPA.2009.5297709.
[31] B. Nagy, Cellular topology and topological coordinate systems on the hexagonal and on the triangular grids, Ann. Math. Artif. Intell., 75 (2015), pp. 117-134. · Zbl 1325.52011
[32] B. Nagy and R. Strand, Non-traditional grids embedded in \(\mathbb{Z}^n \), Internat. J. Shape Modeling, 14 (2008), pp. 209-228, https://doi.org/10.1142/S0218654308001154. · Zbl 1186.65023
[33] L. Najman and H. Talbot, Mathematical Morphology: From Theory to Applications, ISTE/Wiley, New York, 2010. · Zbl 1198.94012
[34] C. Ronse and H. J. A. M. Heijmans, The algebraic basis of mathematical morphology. II. Openings and closings, CVGIP Image Underst., 54 (1991), pp. 74-97, https://doi.org/10.1016/1049-9660(91)90076-2. · Zbl 0788.68159
[35] J. Serra, Image Analysis and Mathematical Morphology, Academic Press, Orlando, FL, 1983.
[36] F. Y. Shih, Image Processing and Mathematical Morphology: Fundamentals and Applications, CRC Press, Boca Raton, FL, 2009. · Zbl 1189.68165
[37] P. Soille, Morphological Image Analysis: Principles and Applications, Springer, Berlin, 2013. · Zbl 0976.68168
[38] I. Stojmenovic, Honeycomb networks: Topological properties and communication algorithms, IEEE Trans. Parallel Distrib. Syst., 8 (1997), pp. 1036-1042.
[39] S. L. Tanimoto, J. P. Crettez, and J. C. Simon, Alternative hierarchies for cellular logic, in Proceedings of the 7th International Conference on Pattern Recognition (ICPR), IEEE Computer Society Press, Silver Springs, MD, 1984, pp. 236-239.
[40] J. N. Wilson and G. X. Ritter, Handbook of Computer Vision Algorithms in Image Algebra, CRC Press, Boca Raton, FL, 2000. · Zbl 0855.68105
[41] X. Zhuang, Digital affine shear transforms: Fast realization and applications in image/video processing, SIAM J. Imaging Sci., 9 (2016), pp. 1437-1466, https://doi.org/10.1137/15M1048318. · Zbl 1387.94025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.