×

Bifurcation of a fractional-order delayed malware propagation model in social networks. (English) Zbl 1453.34094

Summary: In recent years, with the rapid development of the Internet and the Internet of Things, network security is urgently needed. Malware becomes a major threat to network security. Thus, the study on malware propagation model plays an important role in network security. In the past few decades, numerous researchers put up various kinds of malware propagation models to analyze the dynamic interaction. However, many works are only concerned with the integer-order malware propagation models, while the investigation on fractional-order ones is very few. In this paper, based on the earlier works, we will put up a new fractional-order delayed malware propagation model. Letting the delay be bifurcation parameter and analyzing the corresponding characteristic equations of considered system, we will establish a set of new sufficient conditions to guarantee the stability and the existence of Hopf bifurcation of fractional-order delayed malware propagation model. The study shows that the delay and the fractional order have important effect on the stability and Hopf bifurcation of considered system. To check the correctness of theoretical analyses, we carry out some computer simulations. At last, a simple conclusion is drawn. The derived results of this paper are completely innovative and play an important guiding role in network security.

MSC:

34K18 Bifurcation theory of functional-differential equations
34K37 Functional-differential equations with fractional derivatives
68M10 Network design and communication in computer systems
91D30 Social networks; opinion dynamics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Deng, S.; Li, J.; Shen, L., Mobility-based clustering protocol for wireless sensor networks with mobile nodes, IET Wireless Sensor Systems, 1, 1, 39-47 (2011) · doi:10.1049/iet-wss.2010.0084
[2] Liu, Y.; Tian, S.; Hu, W.; Xing, C., Design and statistical analysis of a new chaotic block cipher for Wireless Sensor Networks, Communications in Nonlinear Science and Numerical Simulation, 17, 8, 3267-3278 (2012) · doi:10.1016/j.cnsns.2011.11.040
[3] Wang, Y.-C.; Tseng, Y.-C., Distributed deployment schemes for mobile wireless sensor networks to ensure multilevel coverage, IEEE Transactions on Parallel and Distributed Systems, 19, 9, 1280-1294 (2008) · doi:10.1109/TPDS.2007.70808
[4] Kulkarni, K. A.; Zambare, M. S., The Impact Study of Houseplants in Purification of Environment Using Wireless Sensor Network, Journal of Wireless Sensor Network, 10, 3, 59-69 (2018) · doi:10.4236/wsn.2018.103003
[5] Liu, W.; Liu, C.; Liu, X.; Cui, S.; Huang, X., Modeling the spread of malware with the influence of heterogeneous immunization, Applied Mathematical Modelling: Simulation and Computation for Engineering and Environmental Systems, 40, 4, 3141-3152 (2016) · Zbl 1452.68033 · doi:10.1016/j.apm.2015.09.105
[6] Signes-Pont, M. T.; Cortés-Castillo, A.; Mora-Mora, H.; Szymanski, J., Modelling the malware propagation in mobile computer devices, Computers & Security, 79, 80-93 (2018) · doi:10.1016/j.cose.2018.08.004
[7] Hosseini, S.; Azgomi, M. A., The dynamics of an {SEIRS}-{QV} malware propagation model in heterogeneous networks, Physica A: Statistical Mechanics and its Applications, 512, 803-817 (2018) · Zbl 1514.68022 · doi:10.1016/j.physa.2018.08.081
[8] Jia, P.; Liu, J.; Fang, Y.; Liu, L.; Liu, L., Modeling and analyzing malware propagation in social networks with heterogeneous infection rates, Physica A: Statistical Mechanics and its Applications, 507, 240-254 (2018) · doi:10.1016/j.physa.2018.05.047
[9] Du, B.; Wang, H., Partial differential equation modeling of malware propagation in social networks with mixed delays, Computers & Mathematics with Applications, 57, 10, 3537-3548 (2018) · Zbl 1417.91408
[10] Zhu, L. H.; Zhao, H. Y., Dynamical analysis and optimal control for a malware propagation model in an information network, Neurocomputing, 149, 1370-1386 (2015) · doi:10.1016/j.neucom.2014.08.060
[11] Zhu, L.; Zhao, H.; Wang, X., Stability and bifurcation analysis in a delayed reaction-diffusion malware propagation model, Computers & Mathematics with Applications, 69, 8, 852-875 (2015) · Zbl 1443.68034 · doi:10.1016/j.camwa.2015.02.004
[12] Feng, Q.; Meng, F., Traveling wave solutions for fractional partial differential equations arising in mathematical physics by an improved fractional Jacobi elliptic equation method, Mathematical Methods in the Applied Sciences, 40, 10, 3676-3686 (2017) · Zbl 1370.35073 · doi:10.1002/mma.4254
[13] Wang, Y.; Liu, L., Positive solutions for a class of fractional 3-point boundary value problems at resonance, Advances in Difference Equations, 7, 1-13 (2017) · Zbl 1422.34065
[14] Shen, T.; Xin, J.; Huang, J., Time-space fractional stochastic Ginzburg-Landau equation driven by gaussian white noise, Stochastic Analysis and Applications, 36, 1, 103-113 (2018) · Zbl 1383.37064 · doi:10.1080/07362994.2017.1372783
[15] Zhang, X.; Liu, L.; Wu, Y.; Wiwatanapataphee, B., Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion, Applied Mathematics Letters, 66, 1-8 (2017) · Zbl 1364.35429 · doi:10.1016/j.aml.2016.10.015
[16] Li, M.; Wang, J., Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations, Applied Mathematics and Computation, 324, 254-265 (2018) · Zbl 1426.34110 · doi:10.1016/j.amc.2017.11.063
[17] Wang, Y.; Jiang, J., Existence and nonexistence of positive solutions for the fractional coupled system involving generalized p-Laplacian, Advances in Difference Equations, 337, 1-19 (2017) · Zbl 1444.34019
[18] Zhu, B.; Liu, L.; Wu, Y., Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay, in press, 2016
[19] Zuo, M.; Hao, X.; Liu, L.; Cui, Y., Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions, Boundary Value Problems, 2017, article no. 161 (2017) · Zbl 1483.34112 · doi:10.1186/s13661-017-0892-8
[20] Moustafa, M.; Mohd, M. H.; Ismail, A. I.; Abdullah, F. A., Dynamical analysis of a fractional-order Rosenzweig-MacArthur model incorporating a prey refuge, Chaos, Solitons & Fractals, 109, 1-13 (2018) · Zbl 1390.92116 · doi:10.1016/j.chaos.2018.02.008
[21] Yang, X.; Li, C.; Song, Q.; Chen, J.; Huang, J., Global Mittag-Leffler stability and synchronization analysis of fractional-order quaternion-valued neural networks with linear threshold neurons, Neural Networks, 105, 88-103 (2018) · Zbl 1441.93209 · doi:10.1016/j.neunet.2018.04.015
[22] Dehestani, H.; Ordokhani, Y.; Razzaghi, M., Fractional-order Legendre-LAGuerre functions and their applications in fractional partial differential equations, Applied Mathematics and Computation, 336, 433-453 (2018) · Zbl 1427.35314 · doi:10.1016/j.amc.2018.05.017
[23] Mohammadi, F.; Cattani, C., A generalized fractional-order Legendre wavelet Tau method for solving fractional differential equations, Journal of Computational and Applied Mathematics, 339, 306-316 (2018) · Zbl 1464.65079 · doi:10.1016/j.cam.2017.09.031
[24] Hu, T.; Zhang, X.; Zhong, S., Global asymptotic synchronization of nonidentical fractional-order neural networks, Neurocomputing, 313, 39-46 (2018) · doi:10.1016/j.neucom.2018.05.098
[25] Hamdan, N.; Kilicman, A., A fractional order SIR epidemic model for dengue transmission Chaos, Solitons & Fractals, 114, 55-62 (2018) · Zbl 1415.92179
[26] Teka, W. W.; Upadhyay, R. K.; Mondal, A., Spiking and bursting patterns of fractional-order Izhikevich model, Communications in Nonlinear Science and Numerical Simulation, 56, 161-176 (2018) · Zbl 1510.92052 · doi:10.1016/j.cnsns.2017.07.026
[27] He, S.; Banerjee, S., Epidemic outbreaks and its control using a fractional order model with seasonality and stochastic infection, Physica A: Statistical Mechanics and its Applications, 501, 408-417 (2018) · Zbl 1514.92127 · doi:10.1016/j.physa.2018.02.045
[28] Hajipour, A.; Hajipour, M.; Baleanu, D., On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system, Physica A: Statistical Mechanics and its Applications, 497, 139-153 (2018) · Zbl 1514.34112 · doi:10.1016/j.physa.2018.01.019
[29] Rajagopal, K.; Karthikeyan, A.; Srinivasan, A., Bifurcation and chaos in time delayed fractional order chaotic memfractor oscillator and its sliding mode synchronization with uncertainties, Chaos, Solitons & Fractals, 103, 347-356 (2017) · Zbl 1375.93062 · doi:10.1016/j.chaos.2017.06.028
[30] Huang, C., Multiple scales scheme for bifurcation in a delayed extended van der Pol oscillator, Physica A: Statistical Mechanics and its Applications, 490, 643-652 (2018) · Zbl 1514.34121 · doi:10.1016/j.physa.2017.08.035
[31] Xiao, M.; Jiang, G.; Zheng, W. X.; Yan, S.; Wan, Y.; Fan, C., Bifurcation control of a fractional-order van der Pol oscillator based on the state feedback, Asian Journal of Control, 17, 5, 1756-1766 (2015) · Zbl 1333.93120 · doi:10.1002/asjc.995
[32] Huang, C.; Cao, J.; Xiao, M.; Alsaedi, A.; Hayat, T., Bifurcations in a delayed fractional complex-valued neural network, Applied Mathematics and Computation, 292, 210-227 (2017) · Zbl 1410.37074 · doi:10.1016/j.amc.2016.07.029
[33] Huang, C.; Cao, J.; Xiao, M., Hybrid control on bifurcation for a delayed fractional gene regulatory network, Chaos, Solitons & Fractals, 87, 19-29 (2016) · Zbl 1354.93073 · doi:10.1016/j.chaos.2016.02.036
[34] Xiao, M.; Zheng, W. X.; Lin, J.; Jiang, G.; Zhao, L.; Cao, J., Fractional-order {PD} control at Hopf bifurcations in delayed fractional-order small-world networks, Journal of The Franklin Institute, 354, 17, 7643-7667 (2017) · Zbl 1380.93123 · doi:10.1016/j.jfranklin.2017.09.009
[35] Huo, J.; Zhao, H.; Zhu, L., The effect of vaccines on backward bifurcation in a fractional order HIV model, Nonlinear Analysis: Real World Applications, 26, 289-305 (2015) · Zbl 1371.92080 · doi:10.1016/j.nonrwa.2015.05.014
[36] Du, B.; Wang, H.; Liu, M., An information diffusion model in social networks with carrier compartment and delay, Nonlinear Analysis: Modelling and Control, 23, 4, 568-582 (2018) · Zbl 1418.91426
[37] Podlubny, I., Fractional Differential Equations, 198 (1999), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0918.34010
[38] Matignon, D., Stability results for fractional differential equations with applications to control processing, Computational engineering in systems and application multi-Conference, IMACS, IEEE International Conference on Systems, Man, and Cybernetics Conference
[39] Deng, W.; Li, C.; Lu, J., Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dynamics, 48, 4, 409-416 (2007) · Zbl 1185.34115 · doi:10.1007/s11071-006-9094-0
[40] Sun, Q.; Xiao, M.; Tao, B., Local Bifurcation Analysis of a Fractional-Order Dynamic Model of Genetic Regulatory Networks with Delays, Neural Processing Letters, 47, 3, 1285-1296 (2018)
[41] Xu, C.; Wu, Y., Bifurcation and control of chaos in a chemical system, Applied Mathematical Modelling: Simulation and Computation for Engineering and Environmental Systems, 39, 8, 2295-2310 (2015) · Zbl 1443.92206 · doi:10.1016/j.apm.2014.10.030
[42] Xu, C., Local and global Hopf bifurcation analysis on simplified bidirectional associative memory neural networks with multiple delays, Mathematics and Computers in Simulation, 149, 69-90 (2018) · Zbl 07316228 · doi:10.1016/j.matcom.2018.02.002
[43] Xu, C.; Zhang, Q., Bifurcation analysis of a tri-neuron neural network model in the frequency domain, Nonlinear Dynamics, 76, 1, 33-46 (2014) · Zbl 1319.92009 · doi:10.1007/s11071-013-1107-1
[44] Xu, C. J.; Li, P. L., Dynamics in four-neuron BAM networks with inertia and multiple delays, Cognitive Computation, 8, 78-104 (2016)
[45] Xu, C.; Tang, X.; Liao, M., Frequency domain analysis for bifurcation in a simplified tri-neuron BAM network model with two delays, Neural Networks, 23, 7, 872-880 (2010) · Zbl 1409.34059 · doi:10.1016/j.neunet.2010.03.004
[46] Xu, C. J.; Tang, X. H.; Liao, M. X., Stability and bifurcation analysis of a six-neuron BAM neural network model with discrete delays, Neurocomputing, 74, 5, 689-707 (2011) · doi:10.1016/j.neucom.2010.09.002
[47] Xu, C.; Shao, Y.; Li, P., Bifurcation Behavior for an Electronic Neural Network Model with Two Different Delays, Neural Processing Letters, 42, 3, 541-561 (2015) · doi:10.1007/s11063-014-9372-7
[48] Guillén, J. D.; del Rey, A. M., Modeling malware propagation using a carrier compartment, Communications in Nonlinear Science and Numerical Simulation, 56, 217-226 (2018) · Zbl 1510.68010 · doi:10.1016/j.cnsns.2017.08.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.