×

The pentagonal fuzzy number: its different representations, properties, ranking, defuzzification and application in game problems. (English) Zbl 1416.03024

Summary: In this paper, different measures of interval-valued pentagonal fuzzy numbers (IVPFN) associated with assorted membership functions (MF) were explored, considering significant exposure of multifarious interval-valued fuzzy numbers in neoteric studies. Also, the idea of MF is generalized somewhat to nonlinear membership functions for viewing the symmetries and asymmetries of the pentagonal fuzzy structures. Accordingly, the construction of level sets, for each case of linear and nonlinear MF was also carried out. Besides, defuzzification was undertaken using three methods and a ranking method, which were also the main features of this framework. The developed intellects were implemented in a game problem by taking the parameters as PFNs, ultimately resulting in a new direction for modeling real world problems and to comprehend the uncertainty of the parameters more precisely in the evaluation process.

MSC:

03E72 Theory of fuzzy sets, etc.
91A05 2-person games
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Zadeh, L.A.; Fuzzy sets; Inf. Control: 1965; Volume 8 ,338-353. · Zbl 0139.24606
[2] Chang, S.S.L.; Zadeh, L.A.; On fuzzy mappings and control; IEEE Trans. Syst. Man Cybern.: 1972; Volume 2 ,30-34. · Zbl 0305.94001
[3] Dubois, D.; Prade, H.; Operations on fuzzy numbers; Int. J. Syst. Sci.: 1978; Volume 9 ,613-626. · Zbl 0383.94045
[4] Atanassov, K.T.; ; Intuitionistic Fuzzy Sets: Sofia, Bulgarian 1983; . · Zbl 1488.03039
[5] Smarandache, F.; ; A Unifying Field in Logics Neutrosophy: Neutrosophic Probability: Rehoboth, DE, USA 1998; . · Zbl 1211.03003
[6] Dubois, D.; Prade, H.; Fundamental of Fuzzy Sets; The Handbooks of Fuzzy Sets: New York, NY, USA 2000; Volume Volume 7 .
[7] Guijun, W.; Xiaoping, L.; The applications of interval-valued fuzzy numbers and interval distribution numbers; Fuzzy Sets Syst.: 1998; Volume 98 ,331-335. · Zbl 0930.03078
[8] Wang, G.; Li, X.; Correlation and information energy of interval-valued fuzzy number; Fuzzy Sets Syst.: 2001; Volume 103 ,169-175.
[9] Lin, F.T.; Fuzzy job-shop scheduling based on ranking level (α,β) interval-valued fuzzy numbers; IEEE Trans. Fuzzy Syst.: 2002; Volume 10 ,510-522.
[10] Wei, S.H.; Chen, S.M.; A new approach for fuzzy risk analysis based on similarity measures of generalized fuzzy numbers; Expert Syst. Appl.: 2009; Volume 36 ,589-598.
[11] Kalaichelvi, A.; Malini, P.H.; Janofer, K.; Application of interval fuzzy matrices and interval valued fuzzy soft sets in the analysis of/the factors influencing high scores in higher secondary examinations; Int. J. Math. Sci. Appl.: 2012; Volume 2 ,777-780.
[12] Kumar, P.; Singh, S.B.; Fuzzy fault tree analysis using level (?,?) interval-valued fuzzy numbers; Ind. Eng. Lett.: 2015; Volume 5 ,36-42.
[13] Abirami, D.; Dinagar, D.S.; On L-R type interval valued fuzzy numbers in critical path analysis; Int. J. Fuzzy Math. Arch.: 2015; Volume 6 ,77-83. · Zbl 1371.90054
[14] Su, J.-S.; Fuzzy programming based on interval-valued fuzzy numbers and ranking; Int. J. Contemp. Math. Sci.: 2007; Volume 2 ,393-410. · Zbl 1115.90070
[15] Bhatia, N.; Kumar, A.; Sensitivity analysis for interval valued fully fuzzy linear programming problems; J. Appl. Res. Technol.: 2012; Volume 10 ,871-884.
[16] Mondal, S.P.; Differential equation with interval valued fuzzy number and its applications; Int. J. Syst. Assur. Eng. Manag.: 2016; Volume 7 ,370-380.
[17] Ebrahimnejad, A.; A method for solvig linear programming with interval-valued fuzzy variables; RAIRO-Oper. Res.: 2018; Volume 52 ,955-979. · Zbl 1440.90097
[18] Dahooie, J.H.; Zavadskas, E.K.; Abolhasani, M.; Vanaki, A.; Turskis, Z.; A Novel Approach for Evaluation of Projects Using an Interval-Valued Fuzzy Additive Ratio Assessment (ARAS) Method: A Case Study of Oil and Gas Well Drilling Projects; Symmetry: 2018; Volume 10 .
[19] Panda, A.; Pal, M.; A study on pentagonal fuzzy number and its corresponding matrices; Pac. Sci. Rev. B Hum. Soc. Sci.: 2015; Volume 1 ,131-139.
[20] Anitha, P.; Parvathi, P.; An Inventory Model with Stock Dependent Demand, two parameter Weibull Distribution Deterioration in a juzzy environment; Proceedings of the 2016 Online International Conference on Green Engineering and Technologies (IC-GET): ; ,1-8.
[21] Helen, R.; Uma, G.; A new operation and ranking on pentagon fuzzy numbers; Int. J. Math. Sci. Appl.: 2015; Volume 5 ,341-346.
[22] Siji, S.; Kumari, K.S.; An Approach for Solving Network Problem with Pentagonal Intuitionistic Fuzzy Numbers Using Ranking Technique; Middle-East J. Sci. Res.: 2016; Volume 24 ,2977-2980.
[23] Raj, A.V.; Karthik, S.; Application of Pentagonal Fuzzy Number in Neural Network; Int. J. Math. Appl.: 2016; Volume 4 ,149-154.
[24] Dhanamandand, K.; Parimaldevi, M.; Cost analysis on a probabilistic multi objective-multi item inventory model using pentagonal fuzzy number; Glob. J. Appl. Math. Math. Sci.: 2016; Volume 9 ,151-163.
[25] Pathinathan, T.; Ponnivalavan, K.; Reverse order Triangular, Trapezoidal and Pentagonal Fuzzy Numbers; Ann. Pure Appl. Math.: 2015; Volume 9 ,107-117. · Zbl 1356.03091
[26] Ponnivalavan, K.; Pathinathan, T.; Intuitionistic pentagonal fuzzy number; ARPN J. Eng. Appl. Sci.: 2015; Volume 10 ,5446-5450. · Zbl 1356.03091
[27] Christi, M.S.A.; Kasthuri, B.; Transportation Problem with Pentagonal Intuitionistic Fuzzy Numbers Solved Using Ranking Technique and Russell’s Method; Int. J. Eng. Res. Appl.: 2016; Volume 6 ,82-86.
[28] Mondal, S.P.; Mandal, M.; Pentagonal fuzzy number, its properties and application in fuzzy equation; Future Comput. Inform. J.: 2017; Volume 2 ,110-117.
[29] Mondal, S.P.; Mandal, M.; Bhattacharya, D.; Non-linear interval-valued fuzzy numbers and their application in difference equations; Granul. Comput.: 2018; Volume 3 ,177-189.
[30] Chu, T.C.; Huang, K.S.; Chang, T.M.; COA defuzzification method for evaluating Cpk under fuzzy environments; J. Discret. Math. Sci.Cryptogr.: 2004; Volume 7 ,271-280. · Zbl 1067.94600
[31] Perumal, L.; Nagi, F.H.; Largest of maximum (LOM) method for switching fuzzy control system; Aust. J. Electr. Electron. Eng.: 2008; Volume 4 ,167-178.
[32] Tóth-Laufer, E.; Takács, M.; The Effect of Aggregation and DefuzzificationMethod Selection on the Risk Level Calculation; Proceedings of the 10th IEEE Jubilee International Symposium on Applied Machine Intelligence and Informatics: ; .
[33] Mondal, S.P.; Khan, N.A.; Razzaq, O.A.; Tudu, S.; Roy, T.K.; Adaptive strategies for system of fuzzy differential equation: Application of arms race model; J. Math. Comput. Sci.: 2018; Volume 18 ,192-205. · Zbl 1427.34003
[34] Abbasbandy, S.; Asady, B.; Ranking of fuzzy numbers by sign distance; Inform. Sci.: 2006; Volume 176 ,2405-2416. · Zbl 1293.62008
[35] Abbasbandy, S.; Hajjari, T.; A new approach for ranking of trapezoidal fuzzy numbers; Comput. Math. Appl.: 2009; Volume 57 ,413-419. · Zbl 1165.03337
[36] Abbasbandy, S.; Hajjari, T.; An improvement on centroid point method for ranking of fuzzy numbers; J. Sci. IAU: 2011; Volume 78 ,109-119.
[37] Asady, B.; The revised method of ranking LR fuzzy number based on deviation degree; Expert Syst. Appl.: 2010; Volume 37 ,5056-5060.
[38] Chen, S.J.; Chen, S.M.; A new method for handling multicriteria fuzzy decision making problems using FN-IOWA operators; Cybern. Syst.: 2003; Volume 34 ,109-137. · Zbl 1095.68682
[39] Chen, S.J.; Chen, S.M.; Fuzzy risk analysis based on the ranking of generalized trapezoidal fuzzy numbers; Appl. Intell.: 2007; Volume 26 ,1-11.
[40] Chen, S.-M.; Chen, J.-H.; Fuzzy risk analysis based on the ranking of generalized fuzzy numbers with different heights and different spreads; Expert Syst. Appl.: 2009; Volume 36 ,6833-6842.
[41] Deng, Y.; Liu, Q.; A TOPSIS-based centroid index ranking method of fuzzy numbers and its application in decision-making; Cybern. Syst.: 2005; Volume 36 ,581-595. · Zbl 1141.90451
[42] Deng, Y.; Zhu, Z.F.; Liu, Q.; Ranking fuzzy numbers with an area method usingofgyration; Comput. Math. Appl.: 2006; Volume 51 ,1127-1136. · Zbl 1134.68526
[43] Hajjari, T.; Ranking of fuzzy numbers based on ambiguity degree; Aust. J. Basic Appl. Sci.: 2011; Volume 5 ,62-69.
[44] Hajjari, T.; On deviation degree methods for ranking fuzzy numbers; Aust. J. Basic Appl. Sci.: 2011; Volume 5 ,750-758.
[45] Wang, Z.-X.; Liu, Y.-J.; Fan, Z.-P.; Feng, B.; Ranking L-R fuzzy numbers based on deviation degree; Inform. Sci.: 2009; Volume 176 ,2070-2077. · Zbl 1166.90349
[46] Chen, L.H.; Lu, H.W.; An approximate approach for ranking fuzzy numbers based on left and right dominance; Comput. Math. Appl.: 2001; Volume 41 ,1589-1602. · Zbl 0984.03041
[47] Chen, L.H.; Lu, H.W.; The preference order of fuzzy numbers; Comput. Math. Appl.: 2002; Volume 44 ,1455-1465. · Zbl 1104.91300
[48] Liu, X.W.; Han, S.L.; Ranking fuzzy numbers with preference weighting function expectation; Comput. Math. Appl.: 2005; Volume 49 ,1455-1465.
[49] Cheng, C.H.; A new approach for ranking fuzzy numbers by distance method; Fuzzy Sets Syst.: 1998; Volume 95 ,307-317. · Zbl 0929.91009
[50] Chu, T.; Tsao, C.; Ranking fuzzy numbers with an area between the centroid point and orginalpoint; Comput. Math. Appl.: 2002; Volume 43 ,111-117. · Zbl 1113.62307
[51] Wang, Y.J.; Lee, H.S.; The revised method of ranking fuzzy numbers with an area between the centroid and original points; Comput. Math. Appl.: 2008; Volume 55 ,2033-2042. · Zbl 1137.62313
[52] Halgamuge, S.; Runkler, T.; Glesner, M.; On the neural defuzzification methods; Proceedings of the 5th IEEE International Conference on Fuzzy Systems: ; ,463-469.
[53] Song, Q.; Leland, R.P.; Adaptive learning defuzzificatin techniques and applications; Comput. Math. Appl.: 1996; Volume 81 ,321-329.
[54] Yager, R.R.; Knowledge-based defuzzification; Fuzzy Sets Syst.: 1996; Volume 80 ,177-185.
[55] Filev, D.P.; Yager, R.R.; A generalized defuzzification method via BADD distributions; Int. J. Intell. Syst.: 1991; Volume 6 ,687-697. · Zbl 0752.93040
[56] Jiang, T.; Li, Y.; Generalized defuzzification strategies and their parameter learning procedure; IEEE Trans. Fuzzy Syst.: 1996; Volume 4 ,64-71.
[57] Ramon, E.; ; Moore, Methods and Applications of Interval Analysis: Philadelphia, PA, USA 1979; . · Zbl 0417.65022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.