×

Extremes on river networks. (English) Zbl 1397.62482

Summary: Max-stable processes are the natural extension of the classical extreme-value distributions to the functional setting, and they are increasingly widely used to estimate probabilities of complex extreme events. In this paper we broaden them from the usual situation in which dependence varies according to functions of Euclidean distance to situations in which extreme river discharges at two locations on a river network may be dependent because the locations are flow-connected or because of common meteorological events. In the former case dependence depends on river distance, and in the second it depends on the hydrological distance between the locations, either of which may be very different from their Euclidean distance. Inference for the model parameters is performed using a multivariate threshold likelihood, which is shown by simulation to work well. The ideas are illustrated with data from the upper Danube basin.

MSC:

62P12 Applications of statistics to environmental and related topics
62G32 Statistics of extreme values; tail inference
62H12 Estimation in multivariate analysis

Software:

ismev
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Asadi, P., Davison, A. C. and Engelke, S. (2015). Supplement to “Extremes on river networks.” . · Zbl 1397.62482 · doi:10.1214/15-AOAS863
[2] Bienvenüe, A. and Robert, C. (2014). Likelihood based inference for high-dimensional extreme value distributions. Available at . · Zbl 1394.62064
[3] Blanchet, J. and Davison, A. C. (2011). Spatial modeling of extreme snow depth. Ann. Appl. Stat. 5 1699-1725. · Zbl 1228.62154 · doi:10.1214/11-AOAS464
[4] Böhm, O. and Wetzel, K.-F. (2006). Flood history of the Danube tributaries Lech and Isar in the Alpine foreland of Germany. Hydrological Sciences Journal 51 784-798.
[5] Brown, B. M. and Resnick, S. I. (1977). Extreme values of independent stochastic processes. J. Appl. Probab. 14 732-739. · Zbl 0384.60055 · doi:10.2307/3213346
[6] Chandler, R. E. and Bate, S. (2007). Inference for clustered data using the independence loglikelihood. Biometrika 94 167-183. · Zbl 1142.62367 · doi:10.1093/biomet/asm015
[7] Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values . Springer, London. · Zbl 0980.62043
[8] Coles, S., Heffernan, J. and Tawn, J. (1999). Dependence measures for extreme value analyses. Extremes 2 339-365. · Zbl 0972.62030 · doi:10.1023/A:1009963131610
[9] Coles, S. G. and Tawn, J. A. (1991). Modelling extreme multivariate events. J. R. Stat. Soc. Ser. B. Stat. Methodol. 53 377-392. · Zbl 0800.60020
[10] Cooley, D., Naveau, P. and Poncet, P. (2006). Variograms for spatial max-stable random fields. In Dependence in Probability and Statistics (P. Bertail, P. Soulier and P. Doukhan, eds.). Lecture Notes in Statist. 187 373-390. Springer, New York. · Zbl 1110.62130 · doi:10.1007/0-387-36062-X_17
[11] Cressie, N., Frey, J., Harch, B. and Smith, M. (2006). Spatial prediction on a river network. J. Agric. Biol. Environ. Stat. 11 127-150.
[12] Davison, A. C. and Gholamrezaee, M. M. (2012). Geostatistics of extremes. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 468 581-608. · Zbl 1364.86020 · doi:10.1098/rspa.2011.0412
[13] de Haan, L. and Ferreira, A. (2006). Extreme Value Theory : An Introduction . Springer, New York. · Zbl 1101.62002
[14] Dieker, A. B. and Mikosch, T. (2015). Exact simulation of Brown-Resnick random fields at a finite number of locations. Extremes 18 301-314. · Zbl 1319.60108 · doi:10.1007/s10687-015-0214-4
[15] Dombry, C., Engelke, S. and Oesting, M. (2016). Exact simulation of max-stable processes. Biometrika 103 . · Zbl 1365.60054
[16] Einmahl, J., Kiriliouk, A., Krajina, A. and Segers, J. (2015). An M-estimator of spatial tail dependence. J. R. Stat. Soc. Ser. B. Stat. Methodol. 77 .
[17] Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events : For Insurance and Finance. Applications of Mathematics ( New York ) 33 . Springer, Berlin. · Zbl 0873.62116
[18] Engelke, S., Kabluchko, Z. and Schlather, M. (2011). An equivalent representation of the Brown-Resnick process. Statist. Probab. Lett. 81 1150-1154. · Zbl 1234.60056 · doi:10.1016/j.spl.2011.03.010
[19] Engelke, S., Malinowski, A., Kabluchko, Z. and Schlather, M. (2015). Estimation of Hüsler-Reiss distributions and Brown-Resnick processes. J. R. Stat. Soc. Ser. B. Stat. Methodol. 77 239-265. · doi:10.1111/rssb.12074
[20] Heffernan, J. E. and Tawn, J. A. (2004). A conditional approach for multivariate extreme values. J. R. Stat. Soc. Ser. B. Stat. Methodol. 66 497-546. · Zbl 1046.62051 · doi:10.1111/j.1467-9868.2004.02050.x
[21] Huser, R. and Davison, A. C. (2014). Space-time modelling of extreme events. J. R. Stat. Soc. Ser. B. Stat. Methodol. 76 439-461. · doi:10.1111/rssb.12035
[22] Huser, R., Davison, A. C. and Genton, M. G. (2014). A comparative study of parametric estimators for multivariate extremes. Extremes . Under review.
[23] Hüsler, J. and Reiss, R.-D. (1989). Maxima of normal random vectors: Between independence and complete dependence. Statist. Probab. Lett. 7 283-286. · Zbl 0679.62038 · doi:10.1016/0167-7152(89)90106-5
[24] Kabluchko, Z. (2011). Extremes of independent Gaussian processes. Extremes 14 285-310. · Zbl 1329.60152 · doi:10.1007/s10687-010-0110-x
[25] Kabluchko, Z., Schlather, M. and de Haan, L. (2009). Stationary max-stable fields associated to negative definite functions. Ann. Probab. 37 2042-2065. · Zbl 1208.60051 · doi:10.1214/09-AOP455
[26] Kallache, M., Rust, H. W., Lange, H. and Kropp, J. P. (2010). Extreme value analysis considering trends: Application to discharge data of the Danube river basin. In Extremis : Disruptive Events and Trends in Climate and Hydrology (J. Kropp and H. Schellnhuber, eds.) 167-184. Springer, Berlin.
[27] Katz, R. W., Parlange, M. B. and Naveau, P. (2002). Statistics of extremes in hydrology. Advances in Water Resources 25 1287-1304.
[28] Keef, C., Svensson, C. and Tawn, J. A. (2009). Spatial dependence in extreme river flows and precipitation for Great Britain. Journal of Hydrology 378 240-252.
[29] Keef, C., Tawn, J. A. and Lamb, R. (2013). Estimating the probability of widespread flood events. Environmetrics 24 13-21. · doi:10.1002/env.2190
[30] Keef, C., Tawn, J. and Svensson, C. (2009). Spatial risk assessment for extreme river flows. J. R. Stat. Soc. Ser. C. Appl. Stat. 58 601-618. · doi:10.1111/j.1467-9876.2009.00672.x
[31] Kundzewicz, Z. W., Ulbrich, U., Brücher, T., Graczyk, D., Krüger, A., Leckebusch, G. C., Menzel, L., Pińskwar, I., Radziejewski, M. and Szwed, M. (2005). Summer floods in central Europe-Climate change track? Natural Hazards 36 165-189.
[32] Merz, R. and Blöschl, G. (2005). Flood frequency regionalisation-Spatial proximity vs. catchment attributes. Journal of Hydrology 302 283-306.
[33] Oesting, M., Kabluchko, Z. and Schlather, M. (2012). Simulation of Brown-Resnick processes. Extremes 15 89-107. · Zbl 1329.60157 · doi:10.1007/s10687-011-0128-8
[34] Opitz, T. (2013). Extremal \(t\) processes: Elliptical domain of attraction and a spectral representation. J. Multivariate Anal. 122 409-413. · Zbl 1282.60054 · doi:10.1016/j.jmva.2013.08.008
[35] Padoan, S. A., Ribatet, M. and Sisson, S. A. (2010). Likelihood-based inference for max-stable processes. J. Amer. Statist. Assoc. 105 263-277. · Zbl 1397.62172 · doi:10.1198/jasa.2009.tm08577
[36] Palutikof, J. P., Brabson, B. B., Lister, D. H. and Adcock, S. T. (1999). A review of methods to calculate extreme wind speeds. Meteorol. Appl. 6 119-132.
[37] Renard, B. and Lang, M. (2007). Use of a Gaussian copula for multivariate extreme value analysis: Some case studies in hydrology. Advances in Water Resources 30 897-912.
[38] Resnick, S. I. (1987). Extreme Values , Regular Variation , and Point Processes. Applied Probability. A Series of the Applied Probability Trust 4 . Springer, New York. · Zbl 0633.60001
[39] Rootzén, H. and Tajvidi, N. (2006). Multivariate generalized Pareto distributions. Bernoulli 12 917-930. · Zbl 1134.62028 · doi:10.3150/bj/1161614952
[40] Salvadori, G. and De Michele, C. (2010). Multivariate multiparameter extreme value models and return periods: A copula approach. Water Resources Research 46 W10501.
[41] Schlather, M. (2002). Models for stationary max-stable random fields. Extremes 5 33-44. · Zbl 1035.60054 · doi:10.1023/A:1020977924878
[42] Schlather, M. and Tawn, J. A. (2003). A dependence measure for multivariate and spatial extreme values: Properties and inference. Biometrika 90 139-156. · Zbl 1035.62045 · doi:10.1093/biomet/90.1.139
[43] Skøien, J., Merz, R. and Blöschl, G. (2006). Top-kriging-geostatistics on stream networks. Hydrol. Earth Syst. Sci. 10 277-287.
[44] Tawn, J. A. (1988). An extreme-value theory model for dependent observations. Journal of Hydrology 101 227-250.
[45] Thibaud, E. and Opitz, T. (2015). Efficient inference and simulation for elliptical Pareto processes. Biometrika 102 855-870. · Zbl 1372.62011 · doi:10.1093/biomet/asv045
[46] Ver Hoef, J. M. and Peterson, E. E. (2010). A moving average approach for spatial statistical models of stream networks. J. Amer. Statist. Assoc. 105 6-18. · Zbl 1397.86038 · doi:10.1198/jasa.2009.ap08248
[47] Ver Hoef, J. M., Peterson, E. and Theobald, D. (2006). Spatial statistical models that use flow and stream distance. Environ. Ecol. Stat. 13 449-464. · doi:10.1007/s10651-006-0022-8
[48] Wadsworth, J. L. and Tawn, J. A. (2014). Efficient inference for spatial extreme value processes associated to log-Gaussian random functions. Biometrika 101 1-15. · Zbl 1400.62104 · doi:10.1093/biomet/ast042
[49] Wang, Y. and Stoev, S. A. (2010). On the structure and representations of max-stable processes. Adv. in Appl. Probab. 42 855-877. · Zbl 1210.60053 · doi:10.1239/aap/1282924066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.