×

RETRACTED ARTICLE: Global existence and general decay estimates of solutions of the degenerate or non-degenerate Kirchhoff equation with general dissipation. (English) Zbl 1372.35176

From the text: The Article “Global existence and general decay estimates of solutions for degenerate or nondegenerate Kirchhoff equation with general dissipation” has been withdrawn for copyright reasons.

MSC:

35L15 Initial value problems for second-order hyperbolic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aassila M., Benaissa A.: Existence globale et comportement asymptotique des solutions des équations de Kirchhoff moyennement dégénérées avec un terme nonlinear dissipatif. Funkcialag Ekvacioj 43, 309–333 (2001) · Zbl 1145.35432
[2] M. Abdelli & A. Benaissa, Remarks on the existence and uniqueness of global decaying solutions of the nonlinear viscoelastic wave equations, J. Math. Anal. Appl., submitted. · Zbl 1149.35393
[3] Alabau-Boussouira F.: On convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl. Math. Optim., 51, 61–105 (2005) · Zbl 1107.35077 · doi:10.1007/s00245
[4] Arosio A., Garavaldi S.: On the mildly degenerate Kirchhoff String. Mathematical Methods in the Applied Sciences 14, 177–195 (1991) · Zbl 0735.35094 · doi:10.1002/mma.1670140303
[5] Arnold V.I.: Mathematical methods of classical mechanics. Springer-Verlag, New York (1989)
[6] A. Arosio & S. Spagnolo, Global existence for abstract evolution equations of weakly hyperbolic type, J. Math. Pures Appl. 65 (1986)-3, 263-305. · Zbl 0616.35049
[7] A. Arosio, Abstract linear hyperbolic equations, Hyperbolic equations (Padua, 1985), 237-245, Pitman Res. Notes Math. Ser., 158, Longman Sci. Tech., Harlow, 1987.
[8] A. Arosio, Averaged evolution equations. The Kirchhoff string and its treatment in scales of Banach spaces, Proceeding of the ”2nd workshop on functional-analytic methods in complex analysis” (Trieste, 1993), World Scientific, Singapore.
[9] A. Benaissa & S. Mokeddem, Global existence and energy decay of solutions to the Cauchy problem for a wave equation with a weakly nonlinear dissipation, Abstr. Appl. Anal., 2004 (2004)-11, 935-955. · Zbl 1071.35087
[10] A. Benaissa & L. Rahmani, Global existence and energy decay of solutions for Kirchhoff Carrier equations with weakly nonlinear dissipation, Bulletin of the Belgian Math. Society, 11 (2004)-4, 547-574. · Zbl 1073.35167
[11] Cabanillas Lapa E., Huaringa Segura Z., Leon Barboza F.: On the global solvability of solutions to a quasilinear wave equation with localized damping and source terms. J. Appl. Math., 3, 219–233 (2005) · Zbl 1092.35063 · doi:10.1155/JAM.2005.219
[12] Cavalcanti M.M., Cavalcanti V.D., Lasiecka I.: Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction. J. Diff. Equa. 236, 407–459 (2007) · Zbl 1117.35048 · doi:10.1016/j.jde.2007.02.004
[13] H. R. Crippa, On local solutions of some mildly degenerate hyperbolic equations, Nonlinear Analysis, 21 (1993)-8, 565-574. · Zbl 0808.35076
[14] P. D’Ancona, S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math. 108 (1992)-2, 247-262. · Zbl 0785.35067
[15] P. D’Ancona, S. Spagnolo, On an abstract weakly hyperbolic equation modelling the nonlinear vibrating string, Developments in partial differential equations and applications to mathematical physics (Ferrara, 1991), 27-32, Plenum, New York, (1992).
[16] Daoulatli M., Lasiecka I., Toundykov D.: Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions. Disc. Conti. Dyna. Syst. 2, 67–95 (2009) · Zbl 1172.35443
[17] J. Dieudonné, Calcul infinitésimal, Collection Methodes, Herman, Paris, 1968.
[18] J. G. Dix & R. M. Torrejon, A quasilinear integrodifferential equation of hyperbolic type, Diff. Inte. Equa., 6 (1993)-2, 431-447. · Zbl 0791.35082
[19] J. G. Dix, Decay of solutions of a degenerate hyperbolic equation. Elec. J. Diff. Equa., 1998 (1998)-21, 1-10. · Zbl 0911.35075
[20] Y. Ebihara, L. A. Medeiros & M. M. Miranda, Local solutions for nonlinear degenerate hyperbolic equation, Nonlinear Analysis, 10 (1986)-1, 27-40. · Zbl 0594.35068
[21] Eller M., Lagnese J.E., Nicaise S.: Decay rates for solutions of a Maxwell system with nonlinear boundary damping. Computational. Appl. Math. 21, 135–165 (2002) · Zbl 1119.93402
[22] M. Ghisi & M. Gobbino, Global existence and asymptotic behaviour for a mildly degenerate dissipative hyperbolic equation of Kirchhoff type, Asymptot. Anal., 40 (2004)-1, 25–36. · Zbl 1070.34077
[23] Gourdin D., Mechab M.: Problème de Goursat non linéaire dans les classes de Gevrey, pour des équations de Kirchhoff généralisées. J. Math. Pures Appl. 75, 569–593 (1996) · Zbl 0869.35027
[24] A. Guesmia, Nouvelles inégalités intégrales et application à la stabilisation des systèmes distribués non dissipatifs, C. R. Math. Acad. Sci. Paris, 336 (2003)-10, 801-804.
[25] A. Guesmia, Inégalités intégrales et application à la stabilisation des systèmes distribués non dissipatifs, HDR thesis, Paul Verlaine-Metz University, 2006.
[26] Haraux A.: Two remarks on hyperbolic dissipative problems.. in: Research Notes in Mathematics, Pitman, Boston, MA 122, 161–179 (1985) · Zbl 0579.35057
[27] A. Haraux, L p estimates of solutions to some nonlinear wave equations in one space dimension, Publications du laboratoire d’Analyse Numérique, Université Paris VI, CNRS, Paris, 1995.
[28] Hirosawa F.: Global solvability for the degenerate Kirchhoff equation with real-analytic data in $${\(\backslash\)mathbb{R}\^{n}}$$ . Tsukuba J. Math. 21, 483–503 (1997) · Zbl 0896.35073
[29] Kirchhoff G.: Vorlesungen über Mechanik. Leipzig, Teubner (1883) · JFM 08.0542.01
[30] Komornik V.: Exact Controllability and Stabilization. The Multiplier Method. Masson-John Wiley, Paris (1994) · Zbl 0937.93003
[31] I. Lasiecka, Mathematical control theory of coupled PDE’s, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 75 (2002). · Zbl 1032.93002
[32] Lasiecka I., Ong J.: Global solvability and uniform decays of solutions to quasilinear equation with nonlinear boundary dissipation. Comm. Part. Diff. Equa. 24, 2069–2107 (1999) · Zbl 0936.35031 · doi:10.1080/03605309908821495
[33] Lasiecka I., Tataru D.: Uniform boundary stabilization of semilinear wave equations with nonlinear boundary dampin. Diff. Inte. Equa. 6, 507–533 (1993) · Zbl 0803.35088
[34] Lasiecka I., Toundykov D.: Regularity of higher energies of wave equation with nonlinear localized damping and source terms. Nonlinear Analysis 69, 898–910 (2008) · Zbl 1149.35060 · doi:10.1016/j.na.2008.02.069
[35] Lasiecka I., Toundykov D.: Energy decay rates for the semilinear wave equation with nonlinear localized damping and a nonlinear source. Nonlinear Analysis 64, 1757–1797 (2006) · Zbl 1096.35021 · doi:10.1016/j.na.2005.07.024
[36] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris (1969).
[37] Liu W.J., Zuazua E.: Decay rates for dissipative wave equations. Ricerche di Matematica XLVIII, 61–75 (1999) · Zbl 0939.35126
[38] Martinez P.: A new method to obtain decay rate estimates for dissipative systems. ESAIM Control Optim. Calc. Var. 4, 419–444 (1999) · Zbl 0923.35027 · doi:10.1051/cocv:1999116
[39] Meideiros L.A., Miranda M.: Solutions for the equations of nonlinear vibrations in Sobolev spaces of fractionary order. Computational Applied Math. 6, 257–276 (1987) · Zbl 0652.35075
[40] Nakao M.: A difference inequality and its applications to nonlinear evolution equations. J. Math. Soc. Japan 30, 747–762 (1978) · Zbl 0388.35007 · doi:10.2969/jmsj/03040747
[41] Nakao M.: Remarks on the existence and uniqueness of global decaying solutions of the nonlinear dissipative wave equations. Math. Z. 206, 265–2276 (1991) · Zbl 0698.35102 · doi:10.1007/BF02571342
[42] K. Nishihara & Y. Yamada, On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms, Funkcial. Ekvac., 33 (1990)-1, 151-159. · Zbl 0715.35053
[43] K. Ono, Global existence and decay properties of solutions for some mildly degenerate nonlinear dissipative Kirchhoff strings, Funkcial. Ekvac., 40 (1997)- 2, 255-270. · Zbl 0891.35100
[44] K. Ono, Global solvability for degenerate Kirchhoff equations with weak dissipation, Math. Japan, 50 (1999)-3, 409-413. · Zbl 0939.35128
[45] Ono K.: On global solutions and blow-up solutions of nonlinear Kirchhoff string with nonlinear dissipation. J. Math. Anal. Appl. 216, 321–342 (1997) · Zbl 0893.35078 · doi:10.1006/jmaa.1997.5697
[46] S. Panizzi, On semilinear perturbations of the Kirchhoff string equation, Adv. Math. Sci. Appl., 8 (1998)-1, 217-227. · Zbl 0898.45014
[47] M. Reissig & K. Yagdjian, Weakly hyperbolic equation with fast oscillating coefficients, Osaka J. Math., 36 (1999)-2, 437-464. · Zbl 1008.35042
[48] Rudin W.: Real and complex analysis, second edition. McGraw-Hill, Inc., New York (1974) · Zbl 0278.26001
[49] J. Serrin, G. Todorova & E. Vitillaro, Existence for a nonlinear wave equation with damping and source terms, Diff. Inte. Equa., 16 (2003)-1, 13-50. · Zbl 1036.35146
[50] Strauss W.A.: On continuity of functions with values in various Banach spaces. Pacific J. Math. 19, 543–551 (1966) · Zbl 0185.20103 · doi:10.2140/pjm.1966.19.543
[51] Yamada Y.: Some nonlinear degenerate wave equations. Nonlinear Anal. 11, 1155–1168 (1987) · Zbl 0641.35044 · doi:10.1016/0362-546X(87)90004-6
[52] Yamazaki T.: On local solution of some quasilinear degenerate hyperbolic equations. Funkcial. Ekvac. 31, 439–457 (1988) · Zbl 0689.35056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.