×

Scaling Laplacian pyramids. (English) Zbl 1400.42042

Summary: Laplacian pyramid-based Laurent polynomial \((\mathrm{LP}^2)\) matrices are generated by Laurent polynomial column vectors and have long been studied in connection with Laplacian pyramidal algorithms in signal processing. In this paper, we investigate when such matrices are scalable, that is, when right multiplication by Laurent polynomial diagonal matrices results in paraunitary matrices. The notion of scalability has recently been introduced in the context of finite frame theory and can be considered as a preconditioning method for frames. This paper significantly extends the current research on scalable frames to the setting of polyphase representations of filter banks. Furthermore, as applications of our main results we propose new construction methods for tight wavelet filter banks and tight wavelet frames.

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
11C20 Matrices, determinants in number theory
42C15 General harmonic expansions, frames
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] V. Balakrishnan and S. Boyd, {\it Existence and uniqueness of optimal matrix scalings}, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 29-39. · Zbl 0827.65049
[2] P. J. Burt and E. H. Adelson, {\it The Laplacian pyramid as a compact image code}, IEEE Trans. Commun., 31 (1983), pp. 532-540.
[3] J. Cahill and X. Chen, {\it A note on scalable frames}, in Proceedings of the 10th International Conference on Sampling Theory and Applications, EURASIP Open Library, 2013, pp. 93-96.
[4] P. G. Casazza and G. Kutyniok, eds., {\it Finite Frames: Theory and Applications}, Birkhäuser, Springer, New York, 2013. · Zbl 1257.42001
[5] A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, {\it Stationary subdivision}, Mem. Amer. Math. Soc., 93 (1991), no. 453. · Zbl 0741.41009
[6] M. Charina, M. Putinar, C. Scheiderer, and J. Stökler, {\it An algebraic perspective on multivariate tight wavelet frames}, Constr. Approx., 38 (2013), pp. 253-276. · Zbl 1279.65146
[7] K. Chen, {\it Matrix Preconditioning Techniques and Applications}, Cambridge Monogr. Appl. Comput. Math. 19, Cambridge University Press, Cambridge, UK, 2005. · Zbl 1079.65057
[8] M. S. Copenhaver, Y. H. Kim, C. Logan, K. Mayfield, S. K. Narayan, M. J. Petro, and J. Sheperd, {\it Diagram vectors and tight frame scaling in finite dimensions}, Oper. Matrices, 8 (2014), pp. 73-88. · Zbl 1435.42026
[9] I. Daubechies, {\it Ten Lectures on Wavelets}, SIAM, Philadelphia, 1992. · Zbl 0776.42018
[10] I. Daubechies, B. Han, A. Ron, and Z. Shen, {\it Framelets: MRA-based constructions of wavelet frames}, Appl. Comput. Harmon. Anal., 14 (2003), pp. 1-46. · Zbl 1035.42031
[11] G. Deslauriers and S. Dubuc, {\it Interpolation dyadique}, in Fractals, Dimensions Non-Entières et Applications, Masson, Paris, 1987, pp. 44-55. · Zbl 0645.42010
[12] M. N. Do and M. Vetterli, {\it Pyramidal directional filter banks and curvelets}, in Proceedings of the IEEE International Conference on Image Processing, Vol. 3, 2001, pp. 158-161.
[13] M. N. Do and M. Vetterli, {\it Framing pyramids}, IEEE Trans. Signal Process., 51 (2003), pp. 2329-2342. · Zbl 1369.94023
[14] L. Fejér, {\it Über trigonometrische Polynome}, J. Reine Angew. Math., 146 (1916), pp. 53-82. · JFM 45.0406.02
[15] J. S. Geronimo and P. Iliev, {\it Fejér-Riesz factorizations and the structure of bivariate polynomials orthogonal on the bi-circle}, J. Eur. Math. Soc. (JEMS), 16 (2014), pp. 1849-1880. · Zbl 1303.42010
[16] J. S Geronimo and H. J Woerdeman, {\it Positive extensions, Fejér-Riesz factorization and autoregressive filters in two variables}, Ann. Math., 160 (2004), pp. 839-906. · Zbl 1084.42019
[17] Y. Hur, {\it Effortless critical representation of Laplacian pyramid}, IEEE Trans. Signal Process., 58 (2010), pp. 5584-5596. · Zbl 1392.94037
[18] Y. Hur, H. Park, and F. Zheng, {\it Multi-D wavelet filter bank design using Quillen-Suslin theorem for Laurent polynomials}, IEEE Trans. Signal Process., 62 (2014), pp. 5348-5358. · Zbl 1394.94247
[19] Y. Hur and A. Ron, {\it CAPlets: Wavelet Representations without Wavelets}, preprint, ftp://ftp.cs.wisc.edu/Approx/huron.ps, 2005.
[20] Y. Hur and A. Ron, {\it High-performance very local Riesz wavelet bases of \(L_2(\RR^n)\)}, SIAM J. Math. Anal., 44 (2012), pp. 2237-2265. · Zbl 1250.42085
[21] G. Kutyniok, K. A. Okoudjou, and F. Philipp, {\it Scalable frames and convex geometry}, Contemp. Math., to appear. · Zbl 1307.42029
[22] G. Kutyniok, K. A. Okoudjou, F. Philipp, and E. K. Tuley, {\it Scalable frames}, Linear Algebra Appl., 438 (2013), pp. 2225-2238. · Zbl 1260.42023
[23] S. G. Mallat, {\it A theory for multiresolution signal decomposition: The wavelet representation}, IEEE Trans. Pattern Anal. Mach. Intell., 11 (1989), pp. 674-693. · Zbl 0709.94650
[24] F. Riesz, {\it Über ein Problem des Herrn Carathéodory}, J. Reine Angew. Math., 146 (1916), pp. 83-87. · JFM 45.0408.01
[25] P. P. Vaidyanathan, {\it Multirate Systems and Filter Banks}, Prentice-Hall, Englewood Cliffs, NJ, 1993. · Zbl 0784.93096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.