×

Iterative regularization method for lidar remote sensing. (English) Zbl 1196.76048

Summary: We present an inversion algorithm for ill-posed problems arising in atmospheric remote sensing. The proposed method is an iterative Runge-Kutta type regularization method. Those methods are better well known for solving differential equations. We adapted them for solving inverse ill-posed problems. The numerical performances of the algorithm are studied by means of simulations concerning the retrieval of aerosol particle size distributions from lidar observations.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations

Software:

EARLINET
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Doicu, A.; Schreier, F.; Hess, M., Iteratively regularized Gauss-Newton method for bound-constraint problems in atmospheric remote sensing, Comput. Phys. Comm., 153, 59-65 (2003) · Zbl 1196.86002
[2] Doicu, A.; Schreier, F.; Hess, M., Iteratively regularized Gauss-Newton method for atmospheric remote sensing, Comput. Phys. Comm., 148, 214-226 (2002) · Zbl 1196.86001
[3] Hasekamp, O.; Landgraf, J., Ozone profile retrieval from backscattered ultraviolet radiances: the inverse problem solved by regularization, J. Geophys. Res., 106, 8077-8088 (2001)
[4] Matthias, V.; Bösenberg, J.; Freudenthaler, V.; Amodeo, A.; Balin, I.; Balis, D.; Chaykovski, A.; Chourdakis, G.; Comeron, A.; Delaval, A.; de Tomasi, F.; Eixmann, R.; Hagard, A.; Komguem, L.; Kreipl, S.; Matthey, R.; Rizi, V.; Rodriguez, J. A.; Wandinger, U.; Wang, X., Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments, Appl. Opt., 43, 961-976 (2004)
[5] Böckmann, C.; Wandinger, U.; Ansmann, A.; Bösenberg, J.; Amiridis, V.; Boselli, A.; Delaval, A.; de Tomasi, F.; Frioud, M.; Grigorov, I. V.; Hagard, A.; Horvat, M.; Iarlori, M.; Komguem, L.; Kreipl, S.; Larcheveque, G.; Matthias, V.; Papayannis, A.; Pappalardo, G.; Rocadenbosch, F.; Rodriguez, J. A.; Schneider, J.; Shsherbakov, V.; Wiegner, M., Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms, Appl. Opt., 43, 977-989 (2004)
[6] Pappalardo, G.; Amodeo, A.; Pandolfi, M.; Wandinger, U.; Ansmann, A.; Bösenberg, J.; Matthias, V.; Amiridis, V.; De Tomasi, F.; Frioud, M.; Iarlori, M.; Komguem, L.; Papayannis, A.; Rocadenbosch, F.; Wang, X., Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter and lidar ratio, Appl. Opt., 43, 5370-5385 (2004)
[7] Charlson, R. J.; Wigley, T. M.L., Sulfate aerosol and climatic-change, Sci. Amer., 270, 48-57 (1994)
[8] Anderson, T. L.; Charlson, R. J.; Schwartz, S. E.; Knutti, R.; Boucher, O.; Rode, H.; Heintzenberg, J., Climate forcing by aerosol—a hazy picture, Science, 300, 1103-1104 (2003)
[9] The Intergovernmental Panel on Climate Change (IPCC), IPCC Third Assessment Report—Climate Change 2001: The Scientific Basis, Cambridge University Press, 2001; The Intergovernmental Panel on Climate Change (IPCC), IPCC Third Assessment Report—Climate Change 2001: The Scientific Basis, Cambridge University Press, 2001
[10] Andreae, M. O., The dark side of aerosol, Nature, 409, 671-672 (2001)
[11] Müller, D.; Wandinger, U.; Ansmann, A., Microphysical particle parameters from extinction and backscatter data by inversion with regularization: theory, Appl. Opt., 38, 2347-2357 (1999)
[12] Böckmann, C., Hybrid regularization method for the ill-posed inversion of multi-wavelength lidar data in the retrieval of aerosol size distributions, Appl. Opt., 40, 1329-1342 (2001)
[13] Veselovskii, I.; Kolgotin, A.; Griaznov, V.; Müller, D.; Wandinger, U.; Whitemann, D., Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding, Appl. Opt., 41, 3685-3699 (2002)
[14] Böckmann, C.; Mironova, I.; Müller, D.; Schneidenbach, L.; Nessler, R., Microphysical aerosol parameters from multiwavelength lidar, J. Opt. Soc. Amer. A, 22, 518-528 (2005)
[15] Mie, G., Beiträge zur Optik trüber Medien speziell kolloidaler Metallösungen, Ann. Phys., 25, 377-445 (1908) · JFM 39.0890.02
[16] Bohren, G. F.; Huffman, D. R., Absorption and Scattering of Light by Small Particles (1983), John Wiley and Sons: John Wiley and Sons New York
[17] Engl, H. W.; Hanke, M.; Neubauer, A., Regularization of Inverse Problems, Mathematics and its Applications, vol. 375 (1996), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0859.65054
[18] Gilyazov, S. F.; Gol’dman, N. L., Regularization of Ill-Posed Problems by Iteration Methods (2000), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0943.65066
[19] Vogel, C. R., Computational Methods for Inverse Problems (2002), SIAM: SIAM Philadelphia, PA · Zbl 1008.65103
[20] Böckmann, C., Runge-Kutta type methods for ill-posed problems and the retrieval of aerosol size distributions, (Proc. GAMM-Conference 2001. Proc. GAMM-Conference 2001, Proc. in Appl. Math. and Mech. (PAMM), vol. 1 (2002), Wiley-VCH Verlag: Wiley-VCH Verlag Weinheim), 486-487 · Zbl 1422.65122
[21] Kirsche, A.; Böckmann, C., Rational approximations for ill-conditioned equation systems, Appl. Math. Comput., 171, 385-397 (2005) · Zbl 1087.65029
[22] Kirsche, A.; Böckmann, C., Pade Iteration methods for regularization, Appl. Math. Comput., 172 (2005), (accepted) · Zbl 1087.65029
[23] Heuser, H., Gewöhnliche Differentialgleichungen (1991), B.G. Teubner: B.G. Teubner Stuttgart
[24] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations II (1991), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 0729.65051
[25] Althausen, D.; Müller, D.; Ansmann, A.; Wandinger, U.; Hube, H.; Clauder, E.; Zörner, S., Scanning six-wavelength eleven-channel aerosol lidar, J. Atmos. Ocean. Technol., 17, 1469-1482 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.