×

Disentangling systematic and idiosyncratic dynamics in panels of volatility measures. (English) Zbl 1311.62173

Summary: Realized volatilities observed across several assets show a common secular trend and some idiosyncratic pattern which we accommodate by extending the class of Multiplicative Error Models (MEMs). In our model, the common trend is estimated nonparametrically, while the idiosyncratic dynamics are assumed to follow univariate MEMs. Estimation theory based on seminonparametric methods is developed for this class of models for large cross-sections and large time dimensions. The methodology is illustrated using two panels of realized volatility measures between 2001 and 2008: the SPDR Sectoral Indices of the S&P500 and the constituents of the S&P100. Results show that the shape of the common volatility trend captures the overall level of risk in the market and that the idiosyncratic dynamics have a heterogeneous degree of persistence around the trend. Out-of-sample forecasting shows that the proposed methodology improves volatility prediction over several benchmark specifications.

MSC:

62P05 Applications of statistics to actuarial sciences and financial mathematics
62G05 Nonparametric estimation
91B82 Statistical methods; economic indices and measures
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Alessi, L.; Barigozzi, M.; Capasso, M., Estimation and Forecasting in Large Datasets with Conditionally Heteroskedastic Dynamic Common Factors. Technical Report 09-1115, European Central Bank (2009)
[2] Alizadeh, S.; Brandt, M. W.; Diebold, F. X., Range-based estimation of stochastic volatility models, J. Finance, 57, 1047-1091 (2002)
[3] Amado, C.; Teräsvirta, T., Modelling Conditional and Unconditional Heteroskedasticity with Smoothly Time-Varying Structure. Technical Report 691, SSE/EFI Working Paper Series in Economics and Finance (2008)
[4] Andersen, T. G.; Bollerslev, T.; Diebold, F. X., Roughing it up: including jump components in the measurement, modeling and forecasting of return volatility, Rev. Econ. Stat., 89, 701-720 (2007)
[5] Andersen, T. G.; Bollerslev, T.; Diebold, F. X.; Ebens, H., The distribution of realized stock return volatility, J. Financ. Econ., 61, 43-76 (2001)
[6] Andersen, T. G.; Bollerslev, T.; Diebold, F. X.; Labys, P., Modeling and forecasting realized volatility, Econometrica, 71, 579-625 (2003) · Zbl 1142.91712
[7] Aït-Sahalia, Y.; Mykland, P. A.; Zhang, L., How often to sample a continuous-time process in the presence of market microstructure noise, Rev. Financial Studies, 28, 351-416 (2005)
[8] Bai, J.; Ng, S., Determining the number of factors in approximate factor models, Econometrica, 70, 191-221 (2002) · Zbl 1103.91399
[9] Bandi, F. M.; Russell, J. R., Separating microstructure noise from volatility, J. Financ. Econ., 79, 655-692 (2006)
[10] Barndorff-Nielsen, O. E.; Hansen, P. R.; Lunde, A.; Shephard, N., Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise, Econometrica, 76, 1481-1536 (2008) · Zbl 1153.91416
[11] Barndorff-Nielsen, O. E.; Hansen, P. R.; Lunde, A.; Shephard, N., Realised kernels in practice: trades and quotes, Econom. J., 12, 1-32 (2009) · Zbl 1179.91259
[12] Bauwens, L.; Rombouts, J. V.K., Bayesian clustering of many GARCH models, Econometric Rev., 26, 365-386 (2007) · Zbl 1112.62016
[13] Brownlees, C. T.; Gallo, G. M., Financial econometric analysis at ultra-high frequency: Data handling concerns, Comput. Statist. Data Anal., 51, 2232-2245 (2006) · Zbl 1157.62517
[14] Brownlees, C. T.; Gallo, G. M., Comparison of volatility measures: a risk management perspective, J. Fin. Econometrics, 8, 29-56 (2010)
[15] Chen, X.; Fan, Y., Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification, J. Econometrics, 135, 125-154 (2006) · Zbl 1418.62425
[16] Chen, X.; Ghysels, E.; Wang, F., HYBRID GARCH models and intra-daily return periodicity, J. Time Ser. Econom., 3 (2011) · Zbl 1266.91065
[17] Chiriac, R.; Voev, V., Modelling and forecasting multivariate realized volatility, J. Appl. Econometrics, 26, 922-947 (2011)
[18] Cipollini, F.; Engle, R. F.; Gallo, G. M., Vector Multiplicative Error Models: Representation and Inference. Technical Report 12690, National Bureau of Economic Research (2006)
[19] Colacito, R.; Engle, R. F.; Ghysels, E., A component model for dynamic correlations, J. Econometrics, 164, 45-59 (2011) · Zbl 1441.62653
[20] Corsi, F., A simple approximate long-memory model of realized volatility, J. Fin. Econometrics, 7, 174-196 (2010)
[21] Deo, R.; Hurvich, C.; Lu, Y., Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment, J. Econometrics, 131, 29-58 (2006) · Zbl 1337.62355
[22] Engle, R. F., New frontiers for ARCH models, J. Appl. Econometrics, 17, 425-446 (2002)
[23] Engle, R. F.; Gallo, G. M., A multiple indicators model for volatility using intra-daily data, J. Econometrics, 131, 3-27 (2006) · Zbl 1337.62359
[24] Engle, R. F.; Ghysels, E.; Sohn, B., Stock market volatility and macroeconomic fundamentals, Rev. Econ. Stat., 95, 3, 776-797 (2013)
[25] Engle, R. F.; Rangel, J. G., The spline-GARCH model for low frequency volatility and its global macroeconomic causes, Rev. Financial Studies, 21, 1187-1222 (2008)
[26] Engle, R. F.; Shephard, N.; Sheppard, K., Fitting Vast Dimensional Time-Varying Covariance Models. Technical Report (2008)
[27] Gijbels, I.; Pope, A.; Wand, M., Understanding exponential smoothing via Kernel regression, J. R. Stat. Soc. Ser. B Stat. Methodol., 61, 39-50 (1999) · Zbl 0913.62040
[28] Hafner, C. M.; Linton, O., Efficient estimation of a multivariate multiplicative volatility model, J. Econometrics, 159, 55-73 (2010) · Zbl 1431.62381
[29] Hansen, P. R.; Huang, Z.; Shek, H. H., Realized GARCH: a joint model of returns and realized measures of volatility, J. Appl. Econometrics, 27, 877-906 (2012)
[30] Hansen, P. R.; Lunde, A., Estimating the persistence and the autocorrelation function of a time series that is measured with error, Econometric Theory, 30, 01, 60-93 (2014) · Zbl 1290.91132
[31] Hautsch, N., Capturing common components in high-frequency financial time series: a multivariate stochastic multiplicative error model, J. Econom. Dyn. Control, 32, 3978-4015 (2008) · Zbl 1181.91345
[32] Hautsch, N.; Hess, D.; Veredas, D., The impact of macroeconomic news on quote adjustments, noise, and informational volatility, J. Banking Finance, 35, 2733-2746 (2011)
[33] Joe, H., Asymptotic efficiency of the two-stage estimation method for copula-based models, J. Multivariate Anal., 94, 401-419 (2005) · Zbl 1066.62061
[34] Li, Q.; Racine, J. S., Nonparametric Econometrics: Theory and Practice (2006), Princeton University Press: Princeton University Press Princeton
[35] Long, X.; Su, L.; Ullah, A., Estimation and forecasting of dynamic conditional covariance: a semiparametric multivariate model, J. Bus. Econom. Statist., 29, 109-125 (2011) · Zbl 1214.62035
[36] Luciani, M.; Veredas, D., A Simple Model for Vast Panels of Volatilities. Technical Report 2011/28, ECARES (2011)
[37] McLeish, D., A maximal inequality and dependent strong laws, Ann. Probab., 3, 826-836 (1975) · Zbl 0353.60035
[38] Müller, H., Smooth optimum kernel estimators of densities, regression curves, and modes, Ann. Statist., 12, 744-766 (1984) · Zbl 0543.62031
[39] Noureldin, D.; Shephard, N.; Sheppard, K., Multivariate high-frequency-based volatility (HEAVY) models, J. Appl. Econometrics, 27, 907-933 (2012)
[40] Noureldin, D.; Shephard, N.; Sheppard, K., Multivariate Rotated ARCH Models. Technical Report (2012)
[41] Pakel, C.; Shephard, N.; Sheppard, K., Nuisance parameters, composite likelihoods and a panel of GARCH models, Statist. Sinica, 21, 307-329 (2011) · Zbl 1206.62154
[42] Patton, A., Volatility forecast comparison using imperfect volatility proxies, J. Econometrics, 160, 246-256 (2010) · Zbl 1441.62830
[43] Patton, A. J.; Sheppard, K., Good volatility, bad volatility: signed jumps and the persistence of volatility. Technical Report (2011)
[44] Rangel, J. G.; Engle, R. F., The factor-spline-GARCH model for high and low frequency correlations, J. Bus. Econom. Statist., 30, 109-124 (2012)
[45] Severini, T. A.; Wong, W. H., Profile likelihood and conditionally parametric models, Ann. Statist., 20, 1768-1802 (1992) · Zbl 0768.62015
[46] Shephard, N.; Sheppard, K., Realising the future: forecasting with high frequency based volatility (HEAVY) models, J. Appl. Econometrics, 25, 197-231 (2010)
[47] Song, P. X., Multivariate dispersion models generated from Gaussian copula, Scand. J. Stat., 27, 305-320 (2000) · Zbl 0955.62054
[48] Staniswalis, J. G., On the Kernel estimate of a regression function in likelihood based models, J. Amer. Statist. Assoc., 84, 273-283 (1989) · Zbl 0721.62039
[49] Veredas, D.; Rodriguez-Poo, J.; Espasa, A., Semiparametric estimation for financial durations, (Bauwens, L.; Pohlmeier, W.; Veredas, D., High Frequency Financial Econometrics. Recent Developments (2007), Springer Verlag), 204-208
[50] Wang, Y.; Zou, J., Vast volatility matrix estimation for high-frequency financial data, Ann. Statist., 38, 943-978 (2010) · Zbl 1183.62184
[51] White, H.; Domowitz, I., Nonlinear regression with dependent observations, Econometrica, 52, 143-162 (1984) · Zbl 0533.62055
[52] Wooldridge, J.; White, H., Some invariance principles and central limit theorems for dependent and heterogeneous processes, Econometric Theory, 4, 210-230 (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.