×

On generalized statistical convergence and boundedness of Riesz space-valued sequences. (English) Zbl 1499.40042

MSC:

40A35 Ideal and statistical convergence
46A40 Ordered topological linear spaces, vector lattices
40J05 Summability in abstract structures
PDFBibTeX XMLCite
Full Text: DOI

References:

[2] A. Aizpuru, M.C. list ´an-Gar´cia, F.Rambla-Barreno, Density by Moduli and Statistical Convergence, Quaestiones Mathematicae. 37 (2014), 525-530. · Zbl 1426.40002
[3] H. Albayrak, S. Pehlivan, Statistical convergence and statistical continuity on locally solid Riesz spaces, Topology Appl. 159 (2012), 1887-1893. · Zbl 1244.40002
[4] C. D. Aliprantis, O. Burkinshaw, Locally Solid Riesz Spaces with Applications to Economics, 2nd edition, Amer.Math.Soc., 2003. · Zbl 1043.46003
[5] M. Balcerzak, P. Das, M. Filipczak and J. Swaczyna, Generalized kinds of density and the associated ideals, Acta.Math.Hungar., 147 (2015), No.1, 97-115. · Zbl 1374.03032
[6] G.S. Baranenkov, B.P. Demidovich, V.A. Efimenko, etc., Problems in Mathematical Analysis, Mir, Moscow (1976). · Zbl 0385.26003
[7] S. Bhunia, P. Das and S. K. Pal, Restricting Statistical Convergence, Acta Math. Hungar., 134 (2012)(1-2), 153-161. · Zbl 1265.40016
[8] V. Bilet, Geodesic spaces tangent to metric spaces, Ukr. Math. Zh., 64 (2012), No. 9, 1448-1456; English translation: Ukr. Math. J., 64 (2013), No. 9,1273-1281. · Zbl 1268.53082
[9] V. Bilet and O. Dovgoshey, Isometric embeddings of pretangent spaces inEn, Bull. Belg. Math. Soc. Simon Stevin, 20 (2013), 91-110. · Zbl 1276.54019
[10] A. Caserta, G.Di Maio, Lj.D.R. Koˇcinac, Statistical convergence in function spaces, Abstr. Appl. Anal., Vol 2011 (2011), Article ID-420419, 11 pages. · Zbl 1242.40003
[11] R. C¸ olak, Statistical convergence of order-α, Modern methods in analysis and its application, New Delhi, India, Anamaya Pub. 121-129(2010).
[12] J. Connor, The statistical and strong p-Ces‘aro convergence of sequences, Analysis, 8 (1988) No.(1-2), 47-63. · Zbl 0653.40001
[13] P. Das and E. Savas, Some further results on ideal summability of nets in (l)-groups, Positivity, 19, (2013) No. 1, 53-63. · Zbl 1336.40004
[14] P. Das and E. Savas, On generalized statistical and ideal convergence of metric valued sequences, Ukr. Math. Zh. 68 (2017), No.12, 1849-1859. · Zbl 1490.54006
[15] O. Dovgoshey, Tangent spaces to metric spaces and to their subspaces, Ukr. Mat. Visn., 5, (2008), 468-485.
[16] O. Dovgoshey, F.G. Abdullayev and M.Kuc¨u¨kaslan, Compactness and boundedness of tangent spaces to metric spaces, Beitr. Algebra Geom., 51 (2010), 100-113.
[17] O. Dovgoshey and O. Martio, Tangent spaces to metric spaces, Rep. Math. Helsinki Univ., 480 (2008). · Zbl 1265.54117
[18] I. Farah, Analytic quotients. Theory of lifting for quotients over analytic ideals and integers, Mem. Amer. Math. Soc., 148 (2000). · Zbl 0966.03045
[19] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241-244. · Zbl 0044.33605
[20] A. R. Freedman and J. J. Sember,On summing sequences of 0’s and 1’s, Rocky Mountain J. Math. 11 (1981) 419-425. · Zbl 0496.40008
[21] J. A. Fridy, On statistical convergence, Analysis. 5(4) (1985), 301-313. · Zbl 0588.40001
[22] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer (2001). · Zbl 0985.46008
[23] P. Kostyrko, T. ˇSal´at and W. Wilczy ´nski,I-convergence, Real Anal. Exchange. 26 (2), (2000/2001), 669-685. · Zbl 1021.40001
[24] M.Kuc¨u¨kaslan and U. Deger, On statistical Boundedness of Metric valued sequences., European Journal of Pure and Applied Mathematics, 5 No.2, (2012), 174-186. · Zbl 1389.40016
[25] M.Kuc¨u¨kaslan, U. Deger and O. Dovgoshey, On statistical convergence of Metric valued sequences., Ukr. Math. Zh., 66 No.5, (2014), 796-805. · Zbl 1325.40008
[26] B. K. Lahiri and P. Das,IandI∗-convergence in topological spaces, Math. Bohem. 130(2), (2005), 153-160. · Zbl 1111.40001
[27] M. Macaj and T. ˇSal´at, Statistical convergence and subsequences of given sequences, Math. Bohem. 126 (2001), 191-208. · Zbl 0978.40001
[28] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc. 100 (1986) 161-166. · Zbl 0631.46010
[29] H. I. Miller, A measure theoretic subsequence characterization of statistical convergence, Trans. Amer. Math. Soc., 347 (1995), 1811-1819. · Zbl 0830.40002
[30] H. Nakano, Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49 · Zbl 0050.33402
[31] A. Papadopoulos, Metric spaces, convexity and nonpositive curvature, Eur. Math. Soc., (2005). · Zbl 1115.53002
[32] F. Riesz, Sur la decomposition des operations functionelles lineaires, Alti del Congr. Internaz. del Mat., Bologna 1928,3,Zanichelli (1930) 143-148. · JFM 56.0356.01
[33] W. H. Ruckle, FK space in which the sequence of coordinate vectors is bounded, Can. J. Math., 25 (1973), 973-978 · Zbl 0267.46008
[34] T. ˇSal´at, On statistically convergent sequences of real numbers, Math. Slovaca. 30 (2),(1980), 139-150. · Zbl 0437.40003
[35] I. J. Schoenberg, The integrability methods, Amer. Math. Monthly 66 (1959) 361-375. · Zbl 0089.04002
[36] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-74
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.