A survey of evolution in predictive models and impacting factors in customer churn. (English) Zbl 1373.62030


62B10 Statistical aspects of information-theoretic topics
68T05 Learning and adaptive systems in artificial intelligence
62P30 Applications of statistics in engineering and industry; control charts


Full Text: DOI


[1] Amin, A.; Shehzad, S.; Khan, C.; Ali, I.; Anwar, S., New Trends in Computational Collective Intelligence, Churn prediction in telecommunication industry using rough set approach, 83-95, (2015), Springer, London
[2] Backiel, A.; Verbinnen, Y.; Baesens, B.; Claeskens, G., Combining local and social network classifiers to improve churn prediction, Proc. 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, 651-658, (2015), ACM
[3] Basiri, J.; Taghiyareh, F.; Moshiri, B., A hybrid approach to predict churn, Services Computing Conference (APSCC), 2010 IEEE Asia-Pacific, 485-491, (2010), IEEE
[4] Baumann, A.; Lessmann, S.; Coussement, K.; De Bock, K. W., Maximize what matters: predicting customer churn with decision-centric ensemble selection, Proceedings of the 23rd European Conference on Information Systems (ECIS), (2015), AIS
[5] Binti Oseman, K.; Haris, N. A.; Bin Abu Bakar, F., Data mining in churn analysis model for telecommunication industry, Journal of Statistical Modeling and Analytics, 1, 19-27, (2010)
[6] Branduşoiu, I.; Toderean, G., Churn prediction in the telecommunications sector using support vector machines, Ann. Oradea Univ. Fascicle Manag. Technol. Eng., 1, 19-22, (2013)
[7] Brândusoiu, I. B.; Toderean, G., A neural networks approach for churn prediction modeling in mobile telecommunications industry, University of Pitesti Scientific Bulletin Series: Electronics and Computers Science, 13, 2013, (2013)
[8] Breiman, L., Bagging predictors, Mach. Learn., 24, 123-140, (1996) · Zbl 0858.68080
[9] Broomhead, D. S. and Lowe, D. (1988). Radial basis functions, multi-variable functional interpolation and adaptive networks. Technical Report, DTIC Document. · Zbl 0657.68085
[10] Burez, J.; Van den Poel, D., Handling class imbalance in customer churn prediction, Expert Syst. Appl., 36, 4626-4636, (2009)
[11] Chawla, N. V.; Bowyer, K. W.; Hall, L. O.; Kegelmeyer, W. P., Smote: synthetic minority over-sampling technique, J. Artif. Intell. Res., 16, 321-357, (2002) · Zbl 0994.68128
[12] Cohen, W. W., Fast effective rule induction, Proc. Twelfth Int. Conf. Machine Learning, 115-123, (1995)
[13] Colgate, M.; Stewart, K.; Kinsella, R., Customer defection: A study of the student market in Ireland, Int. J. Bank Mark., 14, 23-29, (1996)
[14] Colorni, A.; Dorigo, M.; Maniezzo, V., Distributed optimization by ant colonies, Proc. First European Conference on Artificial Life, 134-142, (1991)
[15] Cortes, C.; Vapnik, V., Support-vector networks, Mach. Learn., 20, 273-297, (1995) · Zbl 0831.68098
[16] Dahiya, K.; Bhatia, S., Customer churn analysis in telecom industry, 4th Int. Conf. Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), 2015, 1-6, (2015), IEEE
[17] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., A fast and elitist multiobjective genetic algorithm: nsga-ii, IEEE Trans. Evol. Comput., 6, 182-197, (2002)
[18] Dietterich, T. G., Ensemble methods in machine learning, International Workshop on Multiple Classifier Systems, 1-15, (2000), Springer
[19] Droftina, U., Kosir, A. and Stular, M. (2011). Subscriber churn analysis with selected mobile provider. Conference Paper September 2011. DOI: 10.13140/2.1.2942.5924 Conference: 20th International Electrotechnical and Computer Science Conference ERK 2011, At Portoroz, Slovenia. · Zbl 1414.91304
[20] Drummond, C.; Holte, R. C., Severe class imbalance: why better algorithms arent the answer, European Conference on Machine Learning, 539-546, (2005), Springer
[21] Ferreira, J.; Vellasco, M. B.; Pacheco, M. A. C.; Carlos, R.; Barbosa, H., Data mining techniques on the evaluation of wireless churn, ESANN, 483-488, (2004)
[22] Freund, Y.; Schapire, R. E., A desicion-theoretic generalization of on-line learning and an application to boosting, European Conference on Computational Learning Theory, 23-37, (1995), Springer
[23] Gopal, R. K.; Meher, S. K., Customer churn time prediction in mobile telecommunication industry using ordinal regression, Pacific-Asia Conference on Knowledge Discovery and Data Mining, 884-889, (2008), Springer
[24] Hadden, J.; Tiwari, A.; Roy, R.; Ruta, D., Churn prediction: does technology matter, Int. J. Intell. Technol, 1, 104-110, (2006)
[25] Ho, T. K.; Hull, J. J.; Srihari, S. N., Decision combination in multiple classifier systems, IEEE Trans. Pattern Anal. Mach. Intell., 16, 66-75, (1994)
[26] Huang, B.; Buckley, B.; Kechadi, T.-M., Multi-objective feature selection by using nsga-ii for customer churn prediction in telecommunications, Expert Syst. Appl., 37, 3638-3646, (2010)
[27] Huang, Y.; Huang, B.; Kechadi, M., A new filter feature selection approach for customer churn prediction in telecommunications, IEEE Int. Conf. Industrial Engineering and Engineering Management (IEEM), 2010, 338-342, (2010), IEEE
[28] Hung, S.-Y.; Yen, D. C.; Wang, H.-Y., Applying data mining to telecom churn management, Expert Syst. Appl., 31, 515-524, (2006)
[29] Ismail, M. R.; Awang, M. K.; Rahman, M. N. A.; Makhtar, M., A multi-layer perceptron approach for customer churn prediction, Int. J. Multimed. Ubiquit. Eng., 10, 213-222, (2015)
[30] Kirui, C.; Hong, L.; Cheruiyot, W.; Kirui, H., Predicting customer churn in mobile telephony industry using probabilistic classifiers in data mining, IJCSI Int. J. Comput. Sci. Issues, 10, 694-784, (2013)
[31] Kisioglu, P.; Topcu, Y. I., Applying Bayesian belief network approach to customer churn analysis: A case study on the telecom industry of Turkey, Expert Syst. Appl., 38, 7151-7157, (2011)
[32] Kraljević, G.; Gotovac, S., Modeling data mining applications for prediction of prepaid churn in telecommunication services, AUTOMATIKA: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije, 51, 275-283, (2010)
[33] Lemmens, A.; Croux, C., Bagging and boosting classification trees to predict churn, J. Mark. Res., 43, 276-286, (2006)
[34] Li, P., Li, S., Bi, T. and Liu, Y. (2014). Telecom customer churn prediction method based on cluster stratified sampling logistic regression. Int. Conf. Software Intelligence Technologies and Applications & Int. Conf. Frontiers of Internet of Things 2014, IET, pp. 282-287.
[35] Liu, X.-Y.; Wu, J.; Zhou, Z.-H., Exploratory undersampling for class-imbalance learning, IEEE Trans. Syst. Man, Cybern. B (Cybernetics), 39, 539-550, (2009)
[36] Liu, Y.; Yao, X., Ensemble learning via negative correlation, Neural Netw., 12, 1399-1404, (1999)
[37] Liu, Y.; Zhuang, Y., Research model of churn prediction based on customer segmentation and misclassification cost in the context of big data, J. Comput. Commun., 3, 87, (2015)
[38] Maldonado, S.; Flores, Á.; Verbraken, T.; Baesens, B.; Weber, R., Profit-based feature selection using support vector machines-general framework and an application for customer retention, Appl. Soft Comput., 35, 740-748, (2015)
[39] Martens, D.; Baesens, B.; Van Gestel, T., Decompositional rule extraction from support vector machines by active learning, IEEE Trans. Knowl. Data Eng., 21, 178-191, (2009)
[40] Mohammadi, G.; Tavakkoli-Moghaddam, R.; Mohammadi, M., Hierarchical neural regression models for customer churn prediction, J. Eng., 2013, 9, (2013)
[41] Mollineda, R.; Alejo, R.; Sotoca, J., The class imbalance problem in pattern classification and learning, II Congreso Español de Informática (CEDI 2007), 978-84, (2007)
[42] Mozer, M. C.; Wolniewicz, R.; Grimes, D. B.; Johnson, E.; Kaushansky, H., Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry, IEEE Trans. Neural Netw., 11, 690-696, (2000)
[43] Nath, S. V.; Behara, R. S., Customer churn analysis in the wireless industry: A data mining approach, Proc. Annual Meeting of the Decision Sciences Institute, 505-510, (2003)
[44] Olle, G. D. O.; Cai, S., A hybrid churn prediction model in mobile telecommunication industry, Int. J. e-Educ. e-Bus. e-Manag. e-Learn., 4, 55, (2014)
[45] Owczarczuk, M., Churn models for prepaid customers in the cellular telecommunication industry using large data marts, Expert Syst. Appl., 37, 4710-4712, (2010)
[46] Pawlak, Z., Rough sets, Int. J. Comput. Inf. Sci., 11, 341-356, (1982) · Zbl 0501.68053
[47] Peng, L.; Xiaoyang, Y.; Boyu, S.; Jiuling, H., Telecom customer churn prediction based on imbalanced data re-sampling method, Int. Conf. Measurement, Information and Control (ICMIC), 2013, 229-233, (2013), IEEE
[48] Phua, C., Cao, H., Gomes, J. B. and Nguyen, M. N. (2012). Predicting near-future churners and win-backs in the telecommunications industry. arXiv:1210.6891.
[49] Quinlan, J. R., C4. 5: Programs for Machine Learning, (2014), Elsevier
[50] Qureshi, S. A.; Rehman, A. S.; Qamar, A. M.; Kamal, A.; Rehman, A., Telecommunication subscribers’ churn prediction model using machine learning, Eighth Int. Conf. Digital Information Management (ICDIM), 2013, 131-136, (2013), IEEE
[51] Richter, Y.; Yom-Tov, E.; Slonim, N., Predicting customer churn in mobile networks through analysis of social groups, SDM, 732-741, (2010), SIAM
[52] Rodan, A.; Fayyoumi, A.; Faris, H.; Alsakran, J.; AIK-adi, O., Negative correlation learning for customer churn prediction: A comparison study, Sci. World J., 2015, 1-7, (2015)
[53] Rosenblatt, F. (1961). Principles of neurodynamics. Perceptrons and the theory of brain mechanisms. Report, DTIC Document. · Zbl 0143.43504
[54] Sato, T.; Huang, B.; Lefait, G.; Kechadi, M. T.; Buckley, B., Kernel-based principal components analysis on large telecommunication data, Proc. Eighth Australasian Data Mining Conference-Volume 101, 109-115, (2009), Australian Computer Society, Inc.
[55] Schölkopf, B.; Platt, J. C.; Shawe-Taylor, J.; Smola, A. J.; Williamson, R. C., Estimating the support of a high-dimensional distribution, Neural Comput., 13, 1443-1471, (2001) · Zbl 1009.62029
[56] Shaaban, E.; Helmy, Y.; Khedr, A.; Nasr, M., A proposed churn prediction model, IJERA, 2, 693-697, (2012)
[57] Sharma, A.; Kumar Panigrahi, P., A neural network based approach for predicting customer churn in cellular network services, Int. J. Comput. Appl., 27, 26-31, (2011)
[58] Tsai, C.-F.; Chen, M.-Y., Variable selection by association rules for customer churn prediction of multimedia on demand, Expert Syst. Appl., 37, 2006-2015, (2010)
[59] Tsai, C.-F.; Lu, Y.-H., Customer churn prediction by hybrid neural networks, Expert Syst. Appl., 36, 12547-12553, (2009)
[60] Ultsch, A., Data mining and knowledge discovery with emergent self-organizing feature maps for multivariate time series, Kohonen Maps, 46, 33-46, (1999)
[61] Umayaparvathi, V.; Iyakutti, K., Applications of data mining techniques in telecom churn prediction, Int. J. Comput. Appl., 42, 5-9, (2012)
[62] Vafeiadis, T.; Diamantaras, K. I.; Sarigiannidis, G.; Chatzisavvas, K. C., A comparison of machine learning techniques for customer churn prediction, Simul. Model. Pract. Theory, 55, 1-9, (2015)
[63] Verbeke, W.; Dejaeger, K.; Martens, D.; Hur, J.; Baesens, B., New insights into churn prediction in the telecommunication sector: A profit driven data mining approach, Euro. J. Oper. Res., 218, 211-229, (2012)
[64] Verbeke, W.; Martens, D.; Mues, C.; Baesens, B., Building comprehensible customer churn prediction models with advanced rule induction techniques, Expert Syst. Appl., 38, 2354-2364, (2011)
[65] Woods, K.; Bowyer, K.; Kegelmeyer, W. P. Jr, Combination of multiple classifiers using local accuracy estimates, Proceedings CVPR’96, 1996 IEEE Computer Society Conf. Computer Vision and Pattern Recognition, 1996, 391-396, (1996), IEEE
[66] Xia, G.-E.; Jin, W.-D., Model of customer churn prediction on support vector machine, Syst. Eng. Theory Pract., 28, 71-77, (2008)
[67] Xiao, J.; Xiao, Y.; Huang, A.; Liu, D.; Wang, S., Feature-selection-based dynamic transfer ensemble model for customer churn prediction, Knowl. Inf. Syst., 43, 29-51, (2015)
[68] Zhang, Y.; Liang, R.; Li, Y.; Zheng, Y.; Berry, M., Behavior-based telecommunication churn prediction with neural network approach, Int. Symp. Computer Science and Society (ISCCS), 2011, 307-310, (2011), IEEE
[69] Zhao, Y.; Li, B.; Li, X.; Liu, W.; Ren, S., Customer churn prediction using improved one-class support vector machine, Int. Conf. Advanced Data Mining and Applications, 300-306, (2005), Springer
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.