×

zbMATH — the first resource for mathematics

A generalization of Droz-Farny’s line theorem with orthologic triangles. (English) Zbl 1362.51006
Summary: We prove a generalization of Droz-Farny’s theorem with orthologic triangles.
MSC:
51M04 Elementary problems in Euclidean geometries
PDF BibTeX Cite
Full Text: Link
References:
[1] J. L. Ayme, A purely synthetic proof of the Droz-Farny line theorem, Forum Geom., 4 (2004) 219–224. · Zbl 1078.51019
[2] C. J. Bradley, Generalisation of the Droz-Farny lines, Math. Gazette, 92 (2008) 332–335.
[3] A. Droz-Farny, Question 14111, Educational Times, 71 (1899) 89–90. · JFM 30.0456.01
[4] J.-P. Ehrmann and F. M. van Lamoen, A projective generalization of the Droz-Farny line theorem, Forum Geom., 4 (2004) 225–227. · Zbl 1076.51008
[5] F. M. van Lamoen, Hyacinthos message 10716, October 17, 2004.
[6] C. Letrouit, On a new generalization of the Droz-Farny line, Forum Geom., 16 (2016) 367–369. · Zbl 1362.51010
[7] G. Nicollier, Minimal proof of a generalized Droz-Farny theorem, Forum Geom., 16 (2016) 397–398. · Zbl 1362.51016
[8] C. Pohoata and S. H. Ta, A short proof of Lamoen’s generalization of the Droz-Farny line theorem, Mathematical Reflections, 3 (2011).
[9] I. F. Sharygin, Problemas de geometria, (spanish translation), Mir Edition, 1986.
[10] C. Thas, The Droz-Farny theorem and related topics, Forum Geom., 6 (2006) 235–240. · Zbl 1119.51020
[11] T. T. Vu, Advanced Plane Geometry, message 2495, May 1, 2015. Ngo Quang Duong: High School for Gifted Students, Hanoi University of Science, Vietnam National University, Hanoi, Vietnam E-mail address: tenminhladuong@gmail.com Vu Thanh Tung: 250 Quang Trung, Nam Dinh, Vietnam E-mail address: tungvtt@gmail.com
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.