×

The lattice Boltzmann method for nearly incompressible flows. (English) Zbl 07511443

Summary: This review summarizes the rigorous mathematical theory behind the lattice Boltzmann equation (LBE). Relevant properties of the Boltzmann equation and a derivation of the LBE from the Boltzmann equation are presented. A summary of some important LBE models is provided. Focus is given to results from the numerical analysis of the LBE as a solver for the nearly incompressible Navier-Stokes equations with appropriate boundary conditions. A number of numerical results are provided to demonstrate the efficacy of the lattice Boltzmann method.

MSC:

76Mxx Basic methods in fluid mechanics
76Pxx Rarefied gas flows, Boltzmann equation in fluid mechanics
82Cxx Time-dependent statistical mechanics (dynamic and nonequilibrium)

Software:

LBMpy
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Usta, O. B.; Butler, J. E.; Ladd, A. J.C., Transverse migration of a confined polymer driven by an external force, Phys. Rev. Lett., 98, 9, Article 098301 pp. (2007)
[2] Ladd, A. J.C.; Kekre, R.; Butler, J. E., Comparison of the static and dynamic properties of a semiflexible polymer using lattice Boltzmann and Brownian-dynamics simulations, Phys. Rev. E, 80, 3, Article 036704 pp. (2009)
[3] Zhang, Y.; Donev, A.; Weisgraber, T.; Alder, B. J.; Graham, M. D.; de Pablo, J. J., Tethered DNA dynamics in shear flow, J. Chem. Phys., 130, 23, Article 234902 pp. (2009)
[4] Hickey, O. A.; Holm, C.; Harden, J. L.; Slater, G. W., Implicit method for simulating electrohydrodynamics of polyelectrolytes, Phys. Rev. Lett., 105, 14, Article 148301 pp. (2010)
[5] Hammack, A.; Chen, Y.-L.; Pearce, J. K., Role of dissolved salts in thermophoresis of DNA: lattice-Boltzmann-based simulations, Phys. Rev. E, 83, 3, 1, Article 031915 pp. (2011)
[6] Farahpour, F.; Maleknejad, A.; Varnik, F.; Ejtehadi, M. R., Chain deformation in translocation phenomena, Soft Matter, 9, 9, 2750-2759 (2013)
[7] Hickey, O. A.; Holm, C.; Smiatek, J., Lattice-Boltzmann simulations of the electrophoretic stretching of polyelectrolytes: the importance of hydrodynamic interactions, J. Chem. Phys., 140, 16, Article 164904 pp. (2014)
[8] Chen, Y.-L.; Ma, H.; Graham, M. D.; de Pablo, J. J., Modeling DNA in confinement: a comparison between the Brownian dynamics and lattice Boltzmann method, Macromolecules, 40, 16, 5978-5984 (2007)
[9] Izmitli, A.; Schwartz, D. C.; Graham, M. D.; de Pablo, J. J., The effect of hydrodynamic interactions on the dynamics of DNA translocation through pores, J. Chem. Phys., 128, 8, Article 085102 pp. (2008)
[10] Hall, J.; Clarke, N., The mechanics of cilium beating: quantifying the relationship between metachronal wavelength and fluid flow rate, J. Fluid Mech., 891, A20 (2020) · Zbl 1460.76953
[11] Frank, X.; Funfschilling, D.; Midoux, N.; Li, H., Bubbles in a viscous liquid: lattice Boltzmann simulation and experimental validation, J. Fluid Mech., 546, 113-122 (2006) · Zbl 1097.76058
[12] Connington, K.; Lee, T., Lattice Boltzmann simulations of forced wetting transitions of drops on superhydrophobic surfaces, J. Comput. Phys., 250, 601-615 (2013)
[13] Delenne, J.-Y.; Richefeu, V.; Radjai, F., Liquid clustering and capillary pressure in granular media, J. Fluid Mech., 762, R5 (2015)
[14] McClure, J. E.; Berrill, M. A.; Gray, W. G.; Miller, C. T., Tracking interface and common curve dynamics for two-fluid flow in porous media, J. Fluid Mech., 796, 211-232 (2016) · Zbl 1462.76183
[15] Fakhari, A.; Bolster, D.; Luo, L.-S., A weighted multiple-relaxation-time lattice Boltzmann method for multiphase flows and its application to partial coalescence cascades, J. Comput. Phys., 341, 22-43 (2017) · Zbl 1376.76047
[16] Abadi, R. H.H.; Rahimian, M. H.; Fakhari, A., Conservative phase-field lattice-Boltzmann model for ternary fluids, J. Comput. Phys., 374, 668-691 (2018) · Zbl 1416.76238
[17] Rego, L.; Avallone, F.; Ragni, D.; Casalino, D., Jet-installation noise and near-field characteristics of jet-surface interaction, J. Fluid Mech., 895 (2020) · Zbl 1460.76707
[18] Feng, Z.; Michaelides, E. E., The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems, J. Comput. Phys., 195, 2, 602-628 (2004) · Zbl 1115.76395
[19] Tian, F.-B.; Luo, H.; Zhu, L.; Liao, J. C.; Lu, X.-Y., An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments, J. Comput. Phys., 230, 19, 7266-7283 (2011) · Zbl 1327.76106
[20] Dugast, F.; Favennec, Y.; Josset, C., Reactive fluid flow topology optimization with the multi-relaxation time lattice Boltzmann method and a level-set function, J. Comput. Phys., 409, Article 109252 pp. (2020) · Zbl 1435.76064
[21] Lallemand, P.; Luo, L.-S., Lattice Boltzmann equation with overset method for moving objects in two-dimensional flows, J. Comput. Phys., 407 (2020) · Zbl 07504698
[22] Sun, C.; Migliorini, C.; Munn, L. L., Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice Boltzmann analysis, Biophys. J., 85, 1, 208-222 (2003)
[23] Zhang, J.; Johnson, P. C.; Popel, A. S., Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method, J. Biomech., 41, 1, 47-55 (2008)
[24] Melchionna, S., A model for red blood cells in simulations of large-scale blood flows, Macromol. Theory Simul., 20, 7, SI, 548-561 (2011)
[25] Reasor, D. A.; Mehrabadi, M.; Ku, D. N.; Aidun, C. K., Determination of critical parameters in platelet margination, Ann. Biomed. Eng., 41, 2, 238-249 (2013)
[26] Wylie, J.; Koch, D.; Ladd, A., Rheology of suspensions with high particle inertia and moderate fluid inertia, J. Fluid Mech., 480, 95-118 (2003) · Zbl 1063.76653
[27] Poesio, P.; Ooms, G.; Ten Cate, A.; Hunt, J. C.R., Interaction and collisions between particles in a linear shear flow near a wall at low Reynolds number, J. Fluid Mech., 555, 113-130 (2006) · Zbl 1090.76023
[28] Aidun, C. K.; Clausen, J. R., Lattice-Boltzmann method for complex flows, Annu. Rev. Fluid Mech., 42, 439-472 (2010) · Zbl 1345.76087
[29] Masaeli, M.; Sollier, E.; Amini, H.; Mao, W.; Camacho, K.; Doshi, N.; Mitragotri, S.; Alexeev, A.; Di Carlo, D., Continuous inertial focusing and separation of particles by shape, Phys. Rev. X, 2, 3, Article 031017 pp. (2012)
[30] Connington, K. W.; Lee, T.; Morris, J. F., Interaction of fluid interfaces with immersed solid particles using the lattice Boltzmann method for liquid-gas-particle systems, J. Comput. Phys., 283, 453-477 (2015) · Zbl 1351.76232
[31] Nie, D.; Lin, J., Simulation of sedimentation of two spheres with different densities in a square tube, J. Fluid Mech., 896 (2020) · Zbl 1460.76852
[32] Wang, N.; Semprebon, C.; Liu, H.; Zhang, C.; Kusumaatmaja, H., Modelling double emulsion formation in planar flow-focusing microchannels, J. Fluid Mech., 895 (2020) · Zbl 1460.76018
[33] Ferreol, B.; Rothman, D., Lattice-Boltzmann simulations of flow-through Fontainebleau sandstone, Transp. Porous Media, 20, 1-2, 3-20 (1995)
[34] Spaid, M.; Phelan, F., Lattice Boltzmann methods for modeling microscale flow in fibrous porous media, Phys. Fluids, 9, 9, 2468-2474 (1997) · Zbl 1185.76888
[35] Koponen, A.; Kandhai, D.; Hellen, E.; Alava, M.; Hoekstra, A.; Kataja, M.; Niskanen, K.; Sloot, P.; Timonen, J., Permeability of three-dimensional random fiber webs, Phys. Rev. Lett., 80, 4, 716-719 (1998)
[36] Manz, B.; Gladden, L.; Warren, P., Flow and dispersion in porous media: lattice-Boltzmann and NMR studies, AIChE J., 45, 9, 1845-1854 (1999)
[37] Hill, R.; Koch, D.; Ladd, A., The first effects of fluid inertia on flows in ordered and random arrays of spheres, J. Fluid Mech., 448, 213-241 (2001) · Zbl 1045.76036
[38] Hill, R.; Koch, D.; Ladd, A., Moderate-Reynolds-number flows in ordered and random arrays of spheres, J. Fluid Mech., 448, 243-278 (2001) · Zbl 0997.76068
[39] Ahrenholz, B.; Tölke, J.; Lehmann, P.; Peters, A.; Kaestner, A.; Krafczyk, M.; Durner, W., Prediction of capillary hysteresis in a porous material using lattice-Boltzmann methods and comparison to experimental data and a morphological pore network model, Adv. Water Resour., 31, 9, 1151-1173 (2008)
[40] Pot, V.; Peth, S.; Monga, O.; Vogel, L. E.; Genty, A.; Garnier, P.; Vieuble-Gonod, L.; Ogurreck, M.; Beckmann, F.; Baveye, P. C., Three-dimensional distribution of water and air in soil pores: Comparison of two-phase two-relaxation-times lattice-Boltzmann and morphological model outputs with synchrotron X-ray computed tomography data, Adv. Water Resour., 84, 87-102 (2015)
[41] Yang, X.; Mehmani, Y.; Perkins, W. A.; Pasquali, A.; Schönherr, M.; Kim, K.; Perego, M.; Parks, M. L.; Trask, N.; Balhoff, M. T.; Richmond, M. C.; Geier, M.; Krafczyk, M.; Luo, L.-S.; Tartakovsky, A. M.; Scheibe, T. D., Intercomparison of 3D pore-scale flow and solute transport simulation methods, Adv. Water Resour., 95, 176-189 (2016)
[42] Rubinstein, G. J.; Derksen, J. J.; Sundaresan, S., Lattice Boltzmann simulations of low-Reynolds-number flow past fluidized spheres: effect of Stokes number on drag force, J. Fluid Mech., 788, 576-601 (2016) · Zbl 1381.76300
[43] Fakhari, A.; Li, Y.; Bolster, D.; Christensen, K. T., A phase-field lattice Boltzmann model for simulating multiphase flows in porous media: application and comparison to experiments of CO_2 sequestration at pore scale, Adv. Water Resour., 114, 119-134 (2018)
[44] Maggiolo, D.; Picano, F.; Zanini, F.; Carmignato, S.; Guarnieri, M.; Sasic, S.; Strom, H., Solute transport and reaction in porous electrodes at high Schmidt numbers, J. Fluid Mech., 896, A13 (2020) · Zbl 1460.76649
[45] Parmigiani, A.; Faroughi, S.; Huber, C.; Bachmann, O.; Su, Y., Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust, Nature, 532, 7600, 492 (2016)
[46] Gao, T.; Lu, X.-Y., Insect normal hovering flight in ground effect, Phys. Fluids, 20, 8, Article 087101 pp. (2008) · Zbl 1182.76265
[47] Li, G.-J.; Lu, X.-Y., Force and power of flapping plates in a fluid, J. Fluid Mech., 712, 598-613 (2012) · Zbl 1275.76234
[48] Qi, D.; He, G.; Liu, Y., Lattice Boltzmann simulations of a pitch-up and pitch-down maneuver of a chord-wise flexible wing in a free stream flow, Phys. Fluids, 26, 2, Article 021902 pp. (2014)
[49] Suzuki, K.; Minami, K.; Inamuro, T., Lift and thrust generation by a butterfly-like flapping wing-body model: immersed boundary-lattice Boltzmann simulations, J. Fluid Mech., 767, 659-695 (2015)
[50] Rouméas, M.; Gilliéron, P.; Kourta, A., Separated flows around the rear window of a simplified car geometry, Trans. ASME, J. Fluids Eng., 130, 2, Article 021101 pp. (2008)
[51] Rouméas, M.; Gilliéron, P.; Kourta, A., Drag reduction by flow separation control on a car after body, Int. J. Numer. Methods Fluids, 60, 11, 1222-1240 (2009) · Zbl 1166.76048
[52] Pasquali, A.; Schönherr, M.; Geier, M.; Krafczyk, M., Simulation of external aerodynamics of the DrivAer model with the LBM on GPGPUs, (Joubert, G. R.; Leather, H.; Parsons, M.; Peters, F.; Sawyer, M., Parallel Computing: on the Road to Exascale. Parallel Computing: on the Road to Exascale, Advances in Parallel Computing, vol. 27 (2016), IOS Press: IOS Press Amsterdam), 391-400
[53] Holman, D. M.; Brionnaud, R. M.; Chavez Modena, M.; Valero Sanchez, E., Lattice Boltzmann method contribution to the second high-lift prediction workshop, J. Aircr., 52, 4, 1122-1135 (2015)
[54] Djenidi, L., Lattice-Boltzmann simulation of grid-generated turbulence, J. Fluid Mech., 552, 13-35 (2006) · Zbl 1087.76050
[55] Yu, D.; Girimaji, S. S., Direct numerical simulations of homogeneous turbulence subject to periodic shear, J. Fluid Mech., 566, 117-151 (2006) · Zbl 1165.76351
[56] Ertunc, O.; Oezyilmaz, N.; Lienhart, H.; Durst, F.; Beronov, K., Homogeneity of turbulence generated by static-grid structures, J. Fluid Mech., 654, 473-500 (2010) · Zbl 1193.76006
[57] Chikatamarla, S. S.; Frouzakis, C. E.; Karlin, I. V.; Tomboulides, A. G.; Boulouchos, K. B., Lattice Boltzmann method for direct numerical simulation of turbulent flows, J. Fluid Mech., 656, 298-308 (2010) · Zbl 1197.76066
[58] Li, Z.; Banaeizadeh, A.; Jaberi, F. A., Two-phase filtered mass density function for LES of turbulent reacting flows, J. Fluid Mech., 760, 243-277 (2014)
[59] Jin, Y.; Uth, M. F.; Kuznetsov, A. V.; Herwig, H., Numerical investigation of the possibility of macroscopic turbulence in porous media: a direct numerical simulation study, J. Fluid Mech., 766, 76-103 (2015)
[60] Scagliarini, A.; Einarsson, H.; Gylfason, A.; Toschi, F., Law of the wall in an unstably stratified turbulent channel flow, J. Fluid Mech., 781, R5 (2015) · Zbl 1359.76139
[61] Benzi, R.; Succi, S.; Vergassola, M., The lattice Boltzmann-equation: theory and applications, Phys. Rep., 222, 3, 145-197 (1992)
[62] Chen, S.; Doolen, G. D., Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30, 329-364 (1998) · Zbl 1398.76180
[63] Succi, S.; Karlin, I. V.; Chen, H., Role of the H theorem in lattice Boltzmann hydrodynamic simulations, Rev. Mod. Phys., 74, 1203-1220 (2002)
[64] Yu, D.; Mei, R.; Luo, L.-S.; Shyy, W., Viscous flow computations with the method of lattice Boltzmann equation, Prog. Aerosp. Sci., 39, 5, 329-367 (2003)
[65] Rothman, D. H.; Zaleski, S., Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics (1997), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0931.76004
[66] Wolf-Gladrow, D. A., Lattice-Gas Cellular Automata and Lattice Boltzmann Models, Lecture Notes in Mathematics, vol. 1725 (2000), Springer: Springer New York · Zbl 0999.82054
[67] Zhou, J., Lattice Boltzmann Methods for Shallow Water Flows (2004), Springer: Springer Berlin · Zbl 1052.76002
[68] Chopard, B.; Droz, M., Cellular Automata Modeling of Physical Systems (2005), Cambridge University Press: Cambridge University Press Cambridge, UK
[69] Rivet, J.-P.; Boon, J., Lattice Gas Hydrodynamics (2005), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 1220.82104
[70] Krüger, T.; Kusumaatmaja, H.; Shardt, A. K.O.; Silva, G.; Viggen, E. M., The Lattice Boltzmann Method (2017), Springer: Springer Berlin · Zbl 1362.76001
[71] Succi, S., The Lattice Boltzmann Equation (2018), Oxford University Press: Oxford University Press New York · Zbl 1485.76003
[72] McNamara, G. R.; Zanetti, G., Use of the lattice Boltzmann to simulate lattice-gas automata, Phys. Rev. Lett., 61, 2332-2335 (1988)
[73] Higuera, F. J.; Succi, S.; Benzi, R., Lattice gas dynamics with enhanced collisions, Europhys. Lett., 9, 4, 345-349 (1989)
[74] Higuera, F. J.; Jiménez, J., Boltzmann approach to lattice gas simulations, Europhys. Lett., 9, 7, 663-668 (1989)
[75] Vergassola, M.; Benzi, R.; Succi, S., On the hydrodynamic behavior of the lattice Boltzmann-equation, Europhys. Lett., 13, 5, 411-416 (1990)
[76] Frisch, U., Relation between the lattice Boltzmann-equation and the Navier-Stokes equations, Physica D, 47, 1-2, 231-232 (1991)
[77] Frisch, U.; Hasslacher, B.; Pomeau, Y., Lattice-gas automata for the Navier-Stokes equation, Phys. Rev. Lett., 56, 1505-1508 (1986)
[78] d’Humières, D.; Lallemand, P.; Frisch, U., Lattice gas models for 3D hydrodynamics, Europhys. Lett., 2, 4, 291-297 (1986)
[79] Wolfram, S., Cellular automaton fluids 1: basic theory, J. Stat. Phys., 45, 471-526 (1986) · Zbl 0629.76002
[80] Frisch, U.; d’Humières, D.; Hasslacher, B.; Lallemand, P.; Pomeau, Y.; Rivet, J.-P., Lattice gas hydrodynamics in two and three dimensions, Complex Syst., 1, 649-707 (1987) · Zbl 0662.76101
[81] d’Humières, D., Generalized lattice-Boltzmann equations, (Shizgal, B. D.; Weave, D. P., Rarefied Gas Dynamics: Theory and Simulations. Rarefied Gas Dynamics: Theory and Simulations, Prog. Astronaut. Aeronaut., vol. 159 (1992), AIAA: AIAA Washington, DC), 450-458
[82] Abe, T., Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation, J. Comput. Phys., 131, 1, 241-246 (1997) · Zbl 0877.76062
[83] He, X.; Luo, L.-S., A priori derivation of the lattice Boltzmann equation, Phys. Rev. E, 55, 6, R6333-R6336 (1997)
[84] He, X.; Luo, L.-S., Theory of lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, 56, 6, 6811-6817 (1997)
[85] Dellar, P. J., Nonhydrodynamic modes and a priori construction of shallow water lattice Boltzmann equations, Phys. Rev. E, 65, 3, 2B, Article 036309 pp. (2002)
[86] Junk, M.; Klar, A., Discretizations for the incompressible Navier-Stokes equations based on the lattice Boltzmann method, SIAM J. Sci. Comput., 22, 1, 1-19 (2000) · Zbl 0972.76083
[87] Junk, M., A finite difference interpretation of the lattice Boltzmann method, Numer. Methods Partial Differ. Equ., 17, 383-402 (2001) · Zbl 0987.76082
[88] Dubois, F.; Lallemand, P.; Obrecht, C.; Tekitek, M. M., Lattice Boltzmann model approximated with finite difference expressions, Comput. Fluids, 155, SI, 3-8 (2017) · Zbl 1410.76351
[89] Asinari, P.; Ohwada, T., Connection between kinetic methods for fluid-dynamic equations and macroscopic finite-difference schemes, Comput. Math. Appl., 58, 5, 841-861 (2009) · Zbl 1189.76398
[90] Ohwada, T.; Asinari, P., Artificial compressibility method revisited: asymptotic numerical method for incompressible Navier-Stokes equations, J. Comput. Phys., 229, 5, 1698-1723 (2010) · Zbl 1329.76063
[91] Asinari, P.; Ohwada, T.; Chiavazzo, E.; Di Rienzo, A. F., Link-wise artificial compressibility method, J. Comput. Phys., 231, 15, 5109-5143 (2012) · Zbl 1247.76063
[92] Gunstensen, A.; Rothman, D.; Zaleski, S.; Zanetti, G., Lattice Boltzmann model of immiscible fluids, Phys. Rev. A, 43, 8, 4320-4327 (1991)
[93] Gunstensen, A.; Rothman, D., Microscopic modeling of immiscible fluids in 3 dimensions by a lattice Boltzmann method, Europhys. Lett., 18, 2BIS, 157-161 (1992)
[94] He, X.; Chen, S.; Zhang, R., A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability, J. Comput. Phys., 146, 232-300 (1999)
[95] Tölke, J.; Krafczyk, M.; Schulz, M.; Rank, E., Lattice Boltzmann simulations of binary fluid flow through porous media, Philos. Trans. R. Soc. Lond. Ser. A, 360, 1792, 535-545 (2002) · Zbl 1037.76047
[96] Geier, M.; Fakhari, A.; Lee, T., Conservative phase-field lattice Boltzmann model for interface tracking equation, Phys. Rev. E, 91, 6 (2015)
[97] Fakhari, A.; Geier, M.; Lee, T., A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows, J. Comput. Phys., 315, 434-457 (2016) · Zbl 1349.76678
[98] Mitchell, T.; Leonardi, C.; Fakhari, A., Development of a three-dimensional phase-field lattice Boltzmann method for the study of immiscible fluids at high density ratios, Int. J. Multiph. Flow, 107, 1-15 (2018)
[99] Chapman, S.; Cowling, T. G., The Mathematical Theory of Nonuniform Gases (1952), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0049.26102
[100] Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B., Molecular Theory of Gases and Liquids (1954), Wiley: Wiley New York · Zbl 0057.23402
[101] Harris, S., An Introduction to the Theory of Boltzmann Equation (1971), Holt, Rinehart and Winston: Holt, Rinehart and Winston New York, reprinted by Dover, 2004
[102] Cercignani, C., The Boltzmann Equation and Its Applications (1988), Springer: Springer New York · Zbl 0646.76001
[103] Cercignani, C.; Illner, R.; Pulvirenti, M., The Mathematical Theory of Dilute Gases (1994), Springer: Springer New York · Zbl 0813.76001
[104] Sone, Y., Kinetic Theory and Fluid Dynamics (2002), Birkhäuser: Birkhäuser Boston · Zbl 1021.76002
[105] Liboff, R. L., Kinetic Theory: Classical, Quantum, and Relativistic Description (2003), Springer: Springer New York
[106] Golse, F., The Boltzmann equation and its hydrodynamic limits, (Dafermos, C.; Feireisl, E., Evolutionary Equations, Vol. II of Handbooks of Differential Equations (2005), Elsevier: Elsevier Amsterdam), 159-301, Ch. 3 · Zbl 1087.35080
[107] Sone, Y., Molecular Gas Dynamics: Theory, Techniques, and Applications (2007), Birkhäuser: Birkhäuser Boston · Zbl 1144.76001
[108] Saint-Raymond, L., Hydrodynamic Limits of the Boltzmann Equation, Lecture Notes in Mathematics, vol. 1971 (2009), Springer: Springer Heidelberg, Germany · Zbl 1171.82002
[109] Grad, H., Principles of the kinetic theory of gases, (Flügge, S., Thermodynamik der Gase, Vol. XII of Handbuch der Physik (1958), Springer: Springer Berlin), 205-294, Ch. 26
[110] Boltzmann, L., Lectures on Gas Theory (1995), Dover: Dover New York
[111] Bardos, C.; Golse, F.; Levermore, C. D., Fluid dynamic limits of kinetic equations II convergence proofs for the Boltzmann equation, Commun. Pure Appl. Math., 46, 5, 667-753 (1993) · Zbl 0817.76002
[112] Maxwell, J. C., On the dynamical theory of gases, Philos. Trans. R. Soc. Lond.. Philos. Trans. R. Soc. Lond., The Scientific Papers of James Clerk Maxwell, vol. 2, 26-78 (1890), Cambridge University Press: Cambridge University Press Cambridge, reprinted in
[113] Ikenberry, E.; Truesdell, C., On the pressures and the flux of energy in a gas according to Maxwell kinetic theory 1, J. Ration. Mech. Anal., 5, 1, 1-54 (1956) · Zbl 0070.23504
[114] Truesdell, C.; Muncaster, R. G., Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas: Treated as a Branch of Rational Mechanics, Pure and Applied Mathematics, vol. 83 (1980), Academic Press: Academic Press New York · Zbl 1515.80001
[115] Pipkin, A. C., A Course on Integral Equations (1991), Springer: Springer New York · Zbl 0743.45002
[116] Kress, R., Linear Integral Equations, Applied Mathematics Sciences, vol. 82 (2014), Springer: Springer New York · Zbl 1328.45001
[117] Cercignani, C., Mathematical Methods in Kinetic Theory (1990), Plunum Press: Plunum Press New York · Zbl 0726.76083
[118] Grad, H., Note on n-dimensional Hermite polynomials, Commun. Pure Appl. Math., 2, 4, 325-330 (1949) · Zbl 0036.04102
[119] Grad, H., On the kinetic theory of rarefied gases, Commun. Pure Appl. Math., 2, 4, 331-407 (1949) · Zbl 0037.13104
[120] Struchtrup, H., Microscopic Transport Equations for Rarefied Gas Flows — Approximation Methods in Kinetic Theory, Interaction of Mechanics and Mathematics (2005), Springer: Springer Berlin · Zbl 1119.76002
[121] Müller, I.; Ruggeri, T., Rational Extended Thermodynamics, Springer Tracts in Natural Philosophy, vol. 37 (1998), Springer: Springer Heidelberg · Zbl 0895.00005
[122] Cai, Z.; Fan, Y.; Li, R., On hyperbolicity of 13-moment system, Kinet. Relat. Models, 7, 3, 415-432 (2014) · Zbl 1304.82063
[123] Cai, Z.; Fan, Y.; Li, R., Globally hyperbolic regularization of Grad’s moment system, Commun. Pure Appl. Math., 67, 3, 464-518 (2014) · Zbl 1307.35182
[124] Cai, Z.; Fan, Y.; Li, R., A framework on moment model reduction for kinetic equation, SIAM J. Appl. Math., 75, 5, 2001-2023 (2015) · Zbl 1323.76098
[125] Zhao, W.; Yong, W.-A.; Luo, L.-S., Stability analysis of a class of globally hyperbolic moment system, Commun. Math. Sci., 15, 3, 609-633 (2017) · Zbl 1366.82045
[126] Gross, E. P.; Jackson, E. A., Kinetic models and the linearized Boltzmann equation, Phys. Fluids, 2, 4, 432-441 (1959) · Zbl 0087.19901
[127] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 3, 511-525 (1954) · Zbl 0055.23609
[128] Shakhov, E. M., Generalization of the Krook kinetic relaxation equation, Fluid Dyn., 3, 5, 95-96 (1968)
[129] Sirovich, L., Kinetic modeling of gas mixtures, Phys. Fluids, 5, 8, 908-918 (1962) · Zbl 0118.23602
[130] Cercignani, C.; Lampis, M., Kinetic model for gas-surface interaction, Transp. Theory Stat. Phys., 1, 2, 101-114 (1971) · Zbl 0288.76041
[131] Sharipov, F., Rarefied Gas Dynamics - Fundamentals for Research and Practice (2016), Wiley-VCH: Wiley-VCH Berlin, Germany
[132] McCourt, F. R.W.; Beenakker, J. J.M.; Köhler, W. E.; Kuscer, I., Nonequilibrium Phenomena in Polyatomic Gases: Volume 1: Dilute Gases (1990), Oxford University Press: Oxford University Press Oxford, UK
[133] Bird, R. B.; Curtis, C. F.; Amstrong, R. C.; Hassager, O., Dynamics of Polymeric Liquids, Volume 2: Kinetic Theory (1987), Wiley: Wiley New York
[134] Doi, M.; Edwards, S. F., The Theory of Polymer Dynamics (1986), Clarendon Press: Clarendon Press Oxford, UK
[135] Shan, X.; He, X., Discretization of the velocity space in the solution of the Boltzmann equation, Phys. Rev. Lett., 80, 65-68 (1998)
[136] Rubinstein, R.; Luo, L.-S., Theory of the lattice Boltzmann equation: symmetry properties of discrete velocity sets, Phys. Rev. E, 77, 3, Article 036709 pp. (2008)
[137] Qian, Y. H.; Orszag, S. A., Lattice BGK models for the Navier-Stokes equation: nonlinear deviation in compressible regimes, Europhys. Lett., 21, 3, 255-259 (1993)
[138] d’Humières, D.; Bouzidi, M.; Lallemand, P., Thirteen-velocity three-dimensional lattice Boltzmann model, Phys. Rev. E, 63, Article 066702 pp. (2001)
[139] d’Humières, D.; Ginzburg, I.; Krafczyk, M.; Lallemand, P.; Luo, L.-S., Multiple-relaxation-time lattice Boltzmann models in three-dimensions, Philos. Trans. R. Soc. Lond. Ser. A, 360, 1792, 437-451 (2002) · Zbl 1001.76081
[140] He, X.; Chen, S.; Doolen, G. D., A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys., 146, 1, 282-300 (1998) · Zbl 0919.76068
[141] Dellar, P. J., An interpretation and derivation of the lattice Boltzmann method using Strang splitting, Comput. Math. Appl., 65, 129-141 (2013) · Zbl 1268.76044
[142] Dellacherie, S., Construction and analysis of lattice Boltzmann methods applied to a 1D convection-diffusion equation, Acta Appl. Math., 131, 69-140 (2014) · Zbl 1305.76081
[143] Luo, L.-S., Unified theory of the lattice Boltzmann models for nonideal gases, Phys. Rev. Lett., 81, 1618-1621 (1998)
[144] Luo, L.-S., Theory of lattice Boltzmann method: lattice Boltzmann models for nonideal gases, Phys. Rev. E, 62, 4, 4982-4996 (2000)
[145] Weimar, J. R.; Boon, J. P., Nonlinear reactions advected by a flow, Physica A, 224, 1-2, 207-215 (1996)
[146] Qian, Y. H.; Zhou, Y., Complete Galilean-invariant lattice BGK models for the Navier-Stokes equation, Europhys. Lett., 42, 4, 359-364 (1998)
[147] Silva, G.; Semiao, V., Truncation errors and the rotational invariance of three-dimensional lattice models in the lattice Boltzmann method, J. Comput. Phys., 269, 259-279 (2014) · Zbl 1349.76734
[148] Suga, K.; Kuwata, Y.; Takashima, K.; Chikasue, R., A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows, Comput. Math. Appl., 69, 6, 518-529 (2015) · Zbl 1443.76186
[149] Lallemand, P.; Luo, L.-S., Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, 61, 6, 6546-6562 (2000)
[150] Lallemand, P.; d’Humières, D.; Luo, L.-S.; Rubinstein, R., Theory of the lattice Boltzmann method: three-dimensional model for linear viscoelastic fluids, Phys. Rev. E, 67, Article 021203 pp. (2003)
[151] Lallemand, P.; Luo, L.-S., Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions, Phys. Rev. E, 68, 3, Article 036706 pp. (2003)
[152] Ladd, A. J.C., Short-time motion of colloidal particles — numerical-simulation via a fluctuating lattice-Boltzmann equation, Phys. Rev. Lett., 70, 9, 1339-1342 (1993)
[153] Adhikari, R.; Stratford, K.; Cates, M. E.; Wagner, A. J., Fluctuating lattice Boltzmann, Europhys. Lett., 71, 3, 473-479 (2005)
[154] Chun, B.; Ladd, A. J.C., Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps, Phys. Rev. E, 75, 6, Article 066705 pp. (2007)
[155] Dünweg, B.; Schiller, U. D.; Ladd, A. J.C., Statistical mechanics of the fluctuating lattice Boltzmann equation, Phys. Rev. E, 76, 3, Article 036704 pp. (2007)
[156] Karlin, I. V.; Ansumali, S.; Frouzakis, C. E.; Chikatamarla, S. S., Elements of the lattice Boltzmann method I: linear advection equation, Commun. Comput. Phys., 1, 4, 616-655 (2006) · Zbl 1115.76396
[157] Drui, F.; Franck, E.; Helluy, P.; Navoret, L., An analysis of over-relaxation in a kinetic approximation of systems of conservation laws, C. R. Mecanique, 347, 3, 259-269 (2019)
[158] Peng, Y.; Liao, W.; Luo, L.-S.; Wang, L.-P., Comparison of the lattice Boltzmann and pseudo-spectral methods for decaying turbulence: low order statistics, Comput. Fluids, 39, 4, 568-591 (2010) · Zbl 1242.76277
[159] Geier, M.; Schönherr, M.; Pasquali, A.; Krafczyk, M., The cumulant lattice Boltzmann equation in three dimensions: theory and validation, Comput. Math. Appl., 70, 4, 507-547 (2015) · Zbl 1443.76172
[160] Ginzburg, I., Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation, Adv. Water Resour., 28, 11, 1171-1195 (2005)
[161] Ginzburg, I., Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations, Adv. Water Resour., 28, 11, 1196-1216 (2005)
[162] Ginzburg, I., Variably saturated flow described with the anisotropic lattice Boltzmann methods, Comput. Fluids, 35, 8-9, 831-848 (2006) · Zbl 1177.76314
[163] Ginzburg, I.; d’Humières, D., Lattice Boltzmann and analytical modeling of flow processes in anisotropic and heterogeneous stratified aquifers, Adv. Water Resour., 30, 11, 2202-2234 (2007)
[164] Ginzburg, I., Lattice Boltzmann modeling with discontinuous collision components: hydrodynamic and advection-diffusion equations, J. Stat. Phys., 126, 1, 157-206 (2007) · Zbl 1198.82039
[165] Ginzburg, I.; Verhaeghe, F.; d’Humières, D., Two-relaxation-time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions, Commun. Comput. Phys., 3, 2, 427-478 (2008)
[166] Ginzburg, I.; Verhaeghe, F.; d’Humières, D., Study of simple hydrodynamic solutions with the two-relaxation-times lattice Boltzmann scheme, Commun. Comput. Phys., 3, 3, 519-581 (2008)
[167] Ginzburg, I.; d’Humières, D.; Kuzmin, A., Optimal stability of advection-diffusion lattice Boltzmann models with two relaxation times for positive/negative equilibrium, J. Stat. Phys., 139, 6, 1090-1143 (2010) · Zbl 1205.82049
[168] Ginzburg, I., Truncation errors, exact and heuristic stability analysis of two-relaxation-times lattice Boltzmann schemes for anisotropic advection-diffusion equation, Commun. Comput. Phys., 11, 5, 1439-1502 (2012) · Zbl 1373.76241
[169] Ginzburg, I.; Roux, L., Truncation effect on Taylor-Aris dispersion in lattice Boltzmann schemes: accuracy towards stability, J. Comput. Phys., 299, 974-1003 (2015) · Zbl 1351.76235
[170] Zhang, M.; Zhao, W.; Lin, P., Lattice Boltzmann method for general convection-diffusion equations: MRT model and boundary schemes, J. Comput. Phys., 389, 147-163 (2019) · Zbl 1452.65291
[171] Hénon, M., Viscosity of a lattice gas, Complex Syst., 1, 763-789 (1987) · Zbl 0665.76078
[172] Wang, J.; Wang, D.; Lallemand, P.; Luo, L.-S., Lattice Boltzmann simulations of thermal convective flows in two dimensions, Comput. Math. Appl., 65, 2, 262-286 (2013) · Zbl 1268.76050
[173] Dubois, F.; Lallemand, P.; Tekitek, M. M., On anti-bounce back boundary condition for lattice Boltzmann schemes, Comput. Math. Appl., 79, 3, 555-575 (2020) · Zbl 1443.76170
[174] Dubois, F.; Lallemand, P., Towards higher order lattice Boltzmann schemes, J. Stat. Mech. Theory Exp., 2009, Article P06006 pp. (2009) · Zbl 1459.76097
[175] Dubois, F.; Lin, C.-A.; Tekitek, M. M., Anisotropic thermal lattice Boltzmann simulation of 2D natural convection in a square cavity, Comput. Fluids, 124, 278-287 (2016) · Zbl 1390.76709
[176] Anderson, J. D., Hypersonic and High Temperature Gas Dynamics (1989), McGraw-Hill: McGraw-Hill New York, reprinted by AIAA, 2000
[177] Alexander, F.; Chen, S.; Sterling, J., Lattice Boltzmann thermohydrodynamics, Phys. Rev. E, 47, 4, R2249-R2252 (1993)
[178] McNamara, G.; Garcia, A.; Alder, B., A hydrodynamically correct thermal lattice Boltzmann model, J. Stat. Phys., 87, 5/6, 1111-1121 (1997) · Zbl 0939.82038
[179] Dellar, P. J., Two routes from the Boltzmann equation to compressible flow of polyatomic gases, Prog. Comput. Fluid Dyn., 8, 1-4, 84-96 (2008) · Zbl 1187.76725
[180] McNamara, G.; Alder, B., Analysis of the lattice Boltzmann treatment of hydrodynamics, Physica A, 194, 218-228 (1993) · Zbl 0941.82527
[181] Chen, Y.; Ohashi, H.; Akiyama, M., Heat-transfer in lattice BGK modeled fluid, J. Stat. Phys., 81, 1-2, 71-85 (1995) · Zbl 1106.82348
[182] McNamara, G.; Garcia, A.; Alder, B., Stabilization of thermal lattice Boltzmann models, J. Stat. Phys., 81, 1/2, 395-408 (1995) · Zbl 1106.82353
[183] Dellar, P. J., Lattice and discrete Boltzmann equations for fully compressible flow, (Bathe, K.-J., Computational Fluid and Solid Mechanics 2005 (2005), Elsevier: Elsevier Amsterdam, the Netherlands), 632-635
[184] Lallemand, P.; Luo, L.-S., Hybrid finite-difference thermal lattice Boltzmann equation, Int. J. Mod. Phys. B, 17, 1/2, 41-47 (2003)
[185] Lallemand, P.; Dubois, F., Comparison of simulations of convective flows, Commun. Comput. Phys., 17, 5, 1169-1184 (2015) · Zbl 1373.76251
[186] Eggels, J. G.M.; Somers, J. A., Numerical-simulation of free convective flow using the lattice-Boltzmann scheme, Int. J. Heat Fluid Flow, 16, 5, 357-364 (1995)
[187] Guo, Z.; Shi, B.; Zheng, C., A coupled lattice BGK model for the Boussinesq equations, Int. J. Numer. Methods Fluids, 39, 4, 325-342 (2002) · Zbl 1014.76071
[188] Contrino, D.; Lallemand, P.; Asinari, P.; Luo, L.-S., Lattice-Boltzmann simulations of the thermally driven 2D square cavity at high Rayleigh numbers, J. Comput. Phys., 275, 257-272 (2014) · Zbl 1349.76671
[189] Trouette, B., Lattice Boltzmann simulations of a time-dependent natural convection problem, Comput. Math. Appl., 66, 8, 1360-1371 (2013) · Zbl 1381.76303
[190] Nadiga, B. T.; Pullin, D. I., A method for near-equilibrium discrete-velocity gas-flows, J. Comput. Phys., 112, 1, 162-172 (1994) · Zbl 0798.76059
[191] Nadiga, B. T., An Euler solver based on locally adaptive discrete velocities, J. Stat. Phys., 81, 1-2, 129-146 (1995) · Zbl 1106.82334
[192] Yan, G.; Chen, Y.; Hu, S., Simple lattice Boltzmann model for simulating flows with shock wave, Phys. Rev. E, 59, 1, A, 454-459 (1999)
[193] Hinton, F.; Rosenbluth, M.; Wong, S.; Lin-Liu, Y.; Miller, R., Modified lattice Boltzmann method for compressible fluid simulations, Phys. Rev. E, 63, 6, 1, Article 061212 pp. (2001)
[194] Shi, W.; Shyy, W.; Mei, R., Finite-difference-based lattice Boltzmann method for inviscid compressible flows, Numer. Heat Transf. B, 40, 1, 1-21 (2001)
[195] Dellar, P., Compound waves in a thermohydrodynamic lattice BGK scheme using non-perturbative equilibria, Europhys. Lett., 57, 5, 690-696 (2002)
[196] Mason, R., A multi-speed compressible lattice-Boltzmann model, J. Stat. Phys., 107, 1-2, 385-400 (2002) · Zbl 1126.76356
[197] Kataoka, T.; Tsutahara, M., Lattice Boltzmann method for the compressible Euler equations, Phys. Rev. E, 69, 5, 2, Article 056702 pp. (2004)
[198] Hejranfar, K.; Ghaffarian, A., A spectral difference lattice Boltzmann method for solution of inviscid compressible flows on structured grids, Comput. Math. Appl., 72, 5, 1341-1368 (2016) · Zbl 1357.76056
[199] Hejranfar, K.; Ghaffarian, A., A high-order accurate unstructured spectral difference lattice Boltzmann method for computing inviscid and viscous compressible flows, Aerosp. Sci. Technol., 98 (2020), UNSP 105661
[200] Chen, Y.; Ohashi, H.; Akiyama, M., Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations, Phys. Rev. E, 50, 4, 2776-2783 (1994)
[201] Huang, J.; Xu, F.; Vallieres, M.; Feng, D.; Qian, Y.; Fryxell, B.; Strayer, M., A thermal LBGK model for large density and temperature differences, Int. J. Mod. Phys. C, 8, 4, 827-841 (1997)
[202] Pavlo, P.; Vahala, G.; Vahala, L., Higher order isotropic velocity grids in lattice methods, Phys. Rev. Lett., 80, 18, 3960-3963 (1998)
[203] Soe, M.; Vahala, G.; Pavlo, P.; Vahala, L.; Chen, H., Thermal lattice Boltzmann simulations of variable Prandtl number turbulent flows, Phys. Rev. E, 57, 4227-4237 (1998)
[204] Renda, A.; Bella, G.; Succi, S.; Karlin, I., Thermohydrodynamic lattice BGK schemes with non-perturbative equilibria, Europhys. Lett., 41, 3, 279-283 (1998)
[205] Sun, C., Lattice-Boltzmann models for high speed flows, Phys. Rev. E, 58, 6, A, 7283-7287 (1998)
[206] Sun, C., Adaptive lattice Boltzmann model for compressible flows: viscous and conductive properties, Phys. Rev. E, 61, 2645-2653 (2000)
[207] Sun, C., Simulations of compressible flows with strong shocks by an adaptive lattice Boltzmann model, J. Comput. Phys., 161, 70-84 (2000) · Zbl 0971.76074
[208] Kataoka, T.; Tsutahara, M., Lattice Boltzmann model for the compressible Navier-Stokes equations with flexible specific-heat ratio, Phys. Rev. E, 69, 3, 2 (2004)
[209] Kataoka, T.; Tsutahara, M., Accuracy of the lattice Boltzmann method for describing the behavior of a gas in the continuum limit, Phys. Rev. E, 82, Article 056709 pp. (2010)
[210] Saadat, M. H.; Bosch, F.; Karlin, I. V., Lattice Boltzmann model for compressible flows on standard lattices: variable Prandtl number and adiabatic exponent, Phys. Rev. E, 99, 1, Article 013306 pp. (2019)
[211] Zanetti, G., Counting hydrodynamic modes in lattice gas automata models, Physica D, 47, 1, 30-35 (1991)
[212] Hazi, G.; Kavran, P., On the cubic velocity deviations in lattice Boltzmann methods, J. Phys. A, 39, 12, 3127-3136 (2006) · Zbl 1119.82320
[213] Nie, X.; Shan, X.; Chen, H., Galilean invariance of lattice Boltzmann models, Europhys. Lett., 81, 3, Article 34005 pp. (2008)
[214] Dellar, P. J., Lattice Boltzmann algorithms without cubic defects in Galilean invariance on standard lattices, J. Comput. Phys., 259, 270-283 (2014) · Zbl 1349.76673
[215] Hajabdollahi, F.; Premnath, K. N., Galilean-invariant preconditioned central-moment lattice Boltzmann method without cubic velocity errors for efficient steady flow simulations, Phys. Rev. E, 97, 5, Article 053303 pp. (2018)
[216] Huang, R.; Wu, H.; Adams, N. A., Eliminating cubic terms in the pseudopotential lattice Boltzmann model for multiphase flow, Phys. Rev. E, 97, Article 053308 pp. (2018)
[217] Namburi, M.; Krithivasan, S.; Ansumali, S., Crystallographic lattice Boltzmann method, Sci. Rep., 6, Article 27172 pp. (2016)
[218] Shan, X.; Yuan, X.; Chen, H., Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation, J. Fluid Mech., 550, 413-441 (2006) · Zbl 1097.76061
[219] Chikatamarla, S. S.; Karlin, I. V., Entropy and Galilean invariance of lattice Boltzmann theories, Phys. Rev. Lett., 97, 19 (2006) · Zbl 1228.82079
[220] Hazi, G.; Jimenez, C., Simulation of two-dimensional decaying turbulence using the “incompressible” extensions of the lattice Boltzmann method, Comput. Fluids, 35, 3, 280-303 (2006) · Zbl 1160.76397
[221] Swift, M. R.; Osborn, W. R.; Yeomans, J. M., Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. Lett., 75, 830-833 (1995)
[222] Banda, M.; Junk, M.; Klar, A., Kinetic derivation of a finite difference scheme for the incompressible Navier-Stokes equation, J. Comput. Appl. Math., 154, 2, 341-354 (2003) · Zbl 1014.76058
[223] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (1999), Springer: Springer Berlin · Zbl 0923.76004
[224] Stiebler, M.; Tölke, J.; Krafczyk, M., An upwind discretization scheme for the finite volume lattice Boltzmann method, Comput. Fluids, 35, 8-9, 814-819 (2006) · Zbl 1177.76329
[225] Mondal, B.; Mishra, S. C.; Asinari, P.; Borchiellini, R., Analysis of a localized fire in a 3-D tunnel using a hybrid solver: lattice Boltzmann method, finite-volume method, and fully explicit upwind scheme, Numer. Heat Transf. A, 53, 4, 392-417 (2008)
[226] Li, K.; Zhong, C.-W., A multiple-relaxation-time lattice Boltzmann method for high-speed compressible flows, Chin. Phys. B, 24, 5, Article 050501 pp. (2015)
[227] Qiu, R.-F.; You, Y.-C.; Zhu, C.-X.; Chen, R.-Q., Lattice Boltzmann simulation for high-speed compressible viscous flows with a boundary layer, Appl. Math. Model., 48, 567-583 (2017) · Zbl 1480.76105
[228] Qiu, R.; Chen, R.; You, Y., An implicit-explicit finite-difference lattice Boltzmann subgrid method on nonuniform meshes, Int. J. Mod. Phys. C, 28, 4, Article 1750045 pp. (2017)
[229] Yang, F.; Yang, H.; Yan, Y.; Guo, X.; Dai, R.; Liu, C., Simulation of natural convection in an inclined polar cavity using a finite-difference lattice Boltzmann method, J. Mech. Sci. Technol., 31, 6, 3053-3065 (2017)
[230] Li, Y.; Yuan, H.-Z.; Niu, X.-D.; Yang, Y.-Y.; Shu, S., WENO scheme-based lattice Boltzmann flux solver for simulation of compressible flows, Comput. Phys. Commun., 23, 4, SI, 1012-1036 (2018) · Zbl 1474.76050
[231] Watari, M.; Tsutahara, M., Supersonic flow simulations by a three-dimensional multispeed thermal model of the finite difference lattice Boltzmann method, Physica A, 364, 129-144 (2006)
[232] Watari, M., Finite difference lattice Boltzmann method with arbitrary specific heat ratio applicable to supersonic flow simulations, Physica A, 382, 2, 502-522 (2007)
[233] Qiu, R.; Chen, R.; Zhu, C.; You, Y., A Hermite-based lattice Boltzmann model with artificial viscosity for compressible viscous flows, Int. J. Mod. Phys. B, 32, 13 (2018) · Zbl 1423.76367
[234] Wilde, D.; Kramer, A.; Reith, D.; Foysi, H., Semi-Lagrangian lattice Boltzmann method for compressible flows, Phys. Rev. E, 101, 5, Article 053306 pp. (2020)
[235] Saadat, M. H.; Boesch, F.; Karlin, I. V., Semi-Lagrangian lattice Boltzmann model for compressible flows on unstructured meshes, Phys. Rev. E, 101, 2, Article 023311 pp. (2020)
[236] Saadat, M. H.; Karlin, I. V., Arbitrary Lagrangian-Eulerian formulation of lattice Boltzmann model for compressible flows on unstructured moving meshes, Phys. Fluids, 32, 4, Article 046105 pp. (2020)
[237] Schladitz, K.; Peters, S.; Reinel-Bitzer, D.; Wiegmann, A.; Ohser, J., Design of acoustic trim based on geometric modeling and flow simulation for non-woven, Comput. Mater. Sci., 38, 1, 56-66 (2006)
[238] Tsutahara, M.; Kataoka, T.; Shikata, K.; Takada, N., New model and scheme for compressible fluids of the finite difference lattice Boltzmann method and direct simulations of aerodynamic sound, Comput. Fluids, 37, 1, 79-89 (2008) · Zbl 1194.76237
[239] Maríe, S.; Ricot, D.; Sagaut, P., Comparison between lattice Boltzmann method and Navier-Stokes high-order schemes for computational aeroacoustics, J. Comput. Phys., 228, 4, 1056-1070 (2009) · Zbl 1330.76115
[240] Tamura, A.; Tsutahara, M., Direct simulation of Aeolian tones emitted from a circular cylinder in transonic flows using the finite difference lattice Boltzmann method, Fluid Dyn. Res., 42, 1, Article 015007 pp. (2010) · Zbl 1423.76187
[241] Dubois, F.; Lallemand, P., Quartic parameters for acoustic applications of lattice Boltzmann scheme, Comput. Math. Appl., 61, 12, 3404-3416 (2011) · Zbl 1225.76259
[242] Xu, H.; Sagaut, P., Optimal low-dispersion low-dissipation LBM schemes for computational aeroacoustics, J. Comput. Phys., 230, 13, 5353-5382 (2011) · Zbl 1419.76527
[243] Augier, A.; Dubois, F.; Gouarin, L.; Graille, B., Linear lattice Boltzmann schemes for acoustic: parameter choices and isotropy properties, Comput. Math. Appl., 65, 6, 845-863 (2013) · Zbl 1319.76035
[244] Casalino, D.; Ribeiro, A. F.P.; Fares, E.; Noelting, S., Lattice-Boltzmann aeroacoustic analysis of the LAGOON landing-gear configuration, AIAA J., 52, 6, 1232-1248 (2014)
[245] Lallier-Daniels, D.; Piellard, M.; Coutty, B.; Moreau, S., Aeroacoustic study of an axial engine cooling module using lattice-Boltzmann simulations and the Ffowcs Williams and Hawkings’ analogy, Eur. J. Mech. B, Fluids, 61, 2, SI, 244-254 (2017) · Zbl 1408.76471
[246] Casalino, D.; Hazir, A.; Mann, A., Turbofan broadband noise prediction using the lattice Boltzmann method, AIAA J., 56, 2, 609-628 (2018)
[247] Avallone, F.; Casalino, D.; Ragni, D., Impingement of a propeller-slipstream on a leading edge with a flow-permeable insert: a computational aeroacoustic study, Int. J. Aeroacoust., 17, 6-8, SI, 687-711 (2018)
[248] Uphoff, S.; Krafczyk, M.; Kutscher, K.; Rurkowska, K.; Langer, S.; Lippitz, N.; Fassmann, B., A hierarchical approach to determining acoustic absorption properties of porous media combining pore-resolved and macroscopic models, J. Porous Media, 21, 1, 83-100 (2018)
[249] Casalino, D.; Avallone, F.; Gonzalez-Martino, I.; Ragni, D., Aeroacoustic study of a wavy stator leading edge in a realistic fan/OGV stage, J. Sound Vib., 442, 138-154 (2019)
[250] Shao, W.; Li, J., Review of lattice Boltzmann method applied to computational aeroacoustics, Arch. Acoust., 44, 2, 215-238 (2019)
[251] Teruna, C.; Manegar, F.; Avallone, F.; Ragni, D.; Casalino, D.; Carolus, T., Noise reduction mechanisms of an open-cell metal-foam trailing edge, J. Fluid Mech., 898, A18 (2020) · Zbl 1460.76710
[252] Gardiner, C. W., Handbook of Stochastic Methods (1985), Springer: Springer New York
[253] Geier, M., Ab initio derivation of the cascaded lattice Boltzmann automaton (2006), University of Freiburg: University of Freiburg Germany, available at
[254] Geier, M.; Greiner, A.; Korvink, J. G., Cascaded digital lattice Boltzmann automata for high Reynolds number flow, Phys. Rev. E, 73, 6, Article 066705 pp. (2006)
[255] Geier, M.; Greiner, A.; Korvink, J. G., Properties of the cascaded lattice Boltzmann automaton, Int. J. Mod. Phys. C, 18, 4, 455-462 (2007) · Zbl 1137.76460
[256] Geier, M., De-aliasing and stabilization formalism of the cascaded lattice Boltzmann automaton for under-resolved high Reynolds number flow, Int. J. Numer. Methods Fluids, 56, 8, 1249-1254 (2008) · Zbl 1155.76047
[257] Asinari, P., Generalized local equilibrium in the cascaded lattice Boltzmann method, Phys. Rev. E, 78, Article 016701 pp. (2008)
[258] Dubois, F.; Février, T.; Graille, B., On the stability of a relative velocity lattice Boltzmann scheme for compressible Navier-Stokes equations, C. R. Mecanique, 343, 10-11, 599-610 (2015)
[259] Giraud, L.; d’Humières, D.; Lallemand, P., A lattice Boltzmann model for visco-elasticity, Int. J. Mod. Phys. C, 8, 805-815 (1997)
[260] Giraud, L.; d’Humières, D.; Lallemand, P., A lattice Boltzmann model for Jeffreys viscoelastic fluid, Europhys. Lett., 42, 625-630 (1998)
[261] Dellar, P. J., Lattice Boltzmann formulation for linear viscoelastic fluids using an abstract second stress, SIAM J. Sci. Comput., 36, 6, A2507-A2532 (2014) · Zbl 1308.76013
[262] Chen, S.; Chen, H.; Martinez, D.; Matthaeus, W., Lattice Boltzmann model for simulation of magnetohydrodynamics, Phys. Rev. Lett., 67, 27, 3776-3779 (1991)
[263] Dellar, P. J., Lattice kinetic schemes for magnetohydrodynamics, J. Comput. Phys., 179, 1, 95-126 (2002) · Zbl 1060.76093
[264] Breyiannis, G.; Valougeorgis, D., Lattice kinetic simulations of 3-D MHD turbulence, Comput. Fluids, 35, 8-9, 920-924 (2006) · Zbl 1177.76310
[265] Dellar, P. J., Lattice Boltzmann magnetohydrodynamics with current-dependent resistivity, J. Comput. Phys., 237, 115-131 (2013) · Zbl 1286.76115
[266] Ladd, A. J.C., Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results, J. Fluid Mech., 271, 311-339 (1994) · Zbl 0815.76085
[267] Dufty, J. W.; Ernst, M., Lattice Boltzmann-Langevin equations, (Lawniczak, A. T.; Kapral, R., Pattern Formation and Lattice Gas Automata. Pattern Formation and Lattice Gas Automata, Fields Institute Communications, vol. 6 (1996), AMS and Fields Institute), 99-107 · Zbl 0885.60096
[268] Dünweg, B.; Ladd, A. J.C., Lattice Boltzmann simulations of soft matter systems, (Holm, C.; Kremer, K., Advanced Computer Simulation Approaches for Soft Matter Sciences III. Advanced Computer Simulation Approaches for Soft Matter Sciences III, Advances in Polymer Science, vol. 221 (2008), Springer: Springer Berlin), 89-166
[269] Landau, L.; Lifschitz, E., Fluid Mechanics, Course of Theoretical Physics, vol. 6 (1987), Pergamon: Pergamon Oxford, UK · Zbl 0655.76001
[270] Junk, M.; Yong, W.-A., Weighted \(\mathbb{L}^2\)-stability of the lattice Boltzmann method, SIAM J. Numer. Anal., 47, 3, 1651-1665 (2009) · Zbl 1406.65075
[271] Junk, M., Kinetic schemes in the case of low Mach numbers, J. Comput. Phys., 151, 2, 947-968 (1999) · Zbl 0944.76056
[272] Ansumali, S.; Karlin, I. V.; Arcidiacono, S.; Abbas, A.; Prasianakis, N. I., Hydrodynamics beyond Navier-Stokes: exact solution to the lattice Boltzmann hierarchy, Phys. Rev. Lett., 98, Article 124502 pp. (2007)
[273] Montessori, A.; Prestininzi, P.; La Rocca, M.; Succi, S., Lattice Boltzmann approach for complex nonequilibrium flows, Phys. Rev. E, 92, 4 (2015)
[274] Gross, E. P.; Jackson, E. A.; Ziering, S., Boundary value problems in kinetic theory of gases, Ann. Phys., 1, 141-167 (1957) · Zbl 0077.44801
[275] Gross, E. P.; Ziering, S., Kinetic theory of linear shear flow, Phys. Fluids, 1, 215-224 (1958) · Zbl 0083.42004
[276] Shizgal, B., Spectral Methods in Chemistry and Physics: Applications to Kinetic Theory and Quantum Mechanics, Scientific Computation (2015), Springer: Springer New York · Zbl 1327.81007
[277] Ambruş, V. E.; Sofonea, V., Implementation of diffuse-reflection boundary conditions using lattice Boltzmann models based on half-space Gauss-Laguerre quadratures, Phys. Rev. E, 89 (2014), 041301(R)
[278] Ghiroldi, G. P.; Gibelli, L., A finite-difference lattice Boltzmann approach for gas microflows, Commun. Comput. Phys., 17, 1007-1018 (2015) · Zbl 1373.76240
[279] Ambruş, V. E.; Sofonea, V., Lattice Boltzmann models based on half-range Gauss-Hermite quadratures, J. Comput. Phys., 316, 760-788 (2016) · Zbl 1349.76660
[280] Feuchter, C.; Schleifenbaum, W., High-order lattice Boltzmann models for wall-bounded flows at finite Knudsen numbers, Phys. Rev. E, 94 (2016)
[281] Watari, M., Is the lattice Boltzmann method applicable to rarefied gas flows? Comprehensive evaluation of the higher-order models, Trans. ASME: J. Fluids Eng., 138, 1, Article 011202 pp. (2016)
[282] Junk, M.; Yong, W.-A., Rigorous Navier-Stokes limit of the lattice Boltzmann equation, Asymptot. Anal., 35, 165-185 (2003) · Zbl 1043.76003
[283] Junk, M.; Klar, A.; Luo, L.-S., Asymptotic analysis of the lattice Boltzmann equation, J. Comput. Phys., 210, 2, 676-704 (2005) · Zbl 1079.82013
[284] Banda, M. K.; Yong, W.-A.; Klar, A., A stability notion for lattice Boltzmann equations, SIAM J. Sci. Comput., 27, 6, 2098-2111 (2006) · Zbl 1100.76051
[285] Junk, M.; Yang, Z., Convergence of lattice Boltzmann methods for Navier-Stokes flows in periodic and bounded domains, Numer. Math., 112, 1, 65-87 (2009) · Zbl 1160.76038
[286] Yong, W.-A., An Onsager-like relation for the lattice Boltzmann method, Comput. Math. Appl., 58, 5, 862-866 (2009) · Zbl 1189.76420
[287] Yong, W.-A.; Luo, L.-S., Accuracy of the viscous stress in the lattice Boltzmann equation with simple boundary conditions, Phys. Rev. E, 86, Article 065701R pp. (2012)
[288] Strang, G., On construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 3, 506-517 (1968) · Zbl 0184.38503
[289] Huang, J.; Wu, H.; Yong, W.-A., On initial conditions for the lattice Boltzmann method, Commun. Comput. Phys., 18, 2, 450-468 (2015) · Zbl 1373.76246
[290] Yang, Z.; Yong, W.-A., Asymptotic analysis of the lattice Boltzmann method for generalized Newtonian fluid flows, SIAM Multiscale Model. Simul., 12, 3, 1028-1045 (2014) · Zbl 1312.76052
[291] Eggels, J. G.M., Direct and large-eddy simulation of turbulent flow using the lattice-Boltzmann scheme, Int. J. Heat Fluid Flow, 17, 3, 307-323 (1996)
[292] Hou, S. L.; Sterling, J. D.; Chen, S.; Doolen, G. D., A lattice Boltzmann subgrid model for high Reynolds number flows, (Lawniczak, A. T.; Kapral, R., Pattern Formation and Lattice Gas Automata. Pattern Formation and Lattice Gas Automata, Fields Institute Communications, vol. 6 (1996), AMS and Fields Institute), 151-166 · Zbl 0923.76275
[293] Derksen, J. J.; van den Akker, H. E.A., Large eddy simulations on the flow driven by a Rushton turbine, AIChE J., 45, 209-221 (1999)
[294] Krafczyk, M.; Tölke, J.; Luo, L.-S., Large-eddy simulations with a multiple-relaxation-time LBE model, Int. J. Mod. Phys. B, 17, 1/2, 33-39 (2003)
[295] Yu, H.; Luo, L.-S.; Girimaji, S. S., LES of turbulent square jet flow using an MRT lattice Boltzmann model, Comput. Fluids, 35, 8/9, 957-965 (2006) · Zbl 1177.76168
[296] Sagaut, P., Toward advanced subgrid models for lattice-Boltzmann-based large-eddy simulation: theoretical formulations, Comput. Math. Appl., 59, 7, 2194-2199 (2010) · Zbl 1193.76115
[297] Malaspinas, O.; Sagaut, P., Advanced large-eddy simulation for lattice Boltzmann methods: the approximate deconvolution model, Phys. Fluids, 23, 10, Article 105103 pp. (2011) · Zbl 1308.76222
[298] Krafczyk, M.; Kucher, K.; Wang, Y.; Geier, M., DNS/LES studies of turbulent flows based on the cumulant lattice Boltzmann approach, (High Performance Computing in Science and Engineering ’14: Transactions of the High Performance Computing Center. High Performance Computing in Science and Engineering ’14: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2014 (2015), Springer: Springer Heidelberg), 519-532
[299] Flekkøy, E.; Herrmann, H., Lattice Boltzmann models for complex fluids, Physica A, 199, 1, 1-11 (1993)
[300] Gabbanelli, S.; Drazer, G.; Koplik, J., Lattice Boltzmann method for non-Newtonian (power-law) fluids, Phys. Rev. E, 72, 4, 2, Article 046312 pp. (2005)
[301] Kehrwald, D., Lattice Boltzmann simulation of shear-thinning fluids, J. Stat. Phys., 121, 1-2, 223-237 (2005) · Zbl 1085.82009
[302] Boyd, J.; Buick, J.; Green, S., A second-order accurate lattice Boltzmann non-Newtonian flow model, J. Phys. A, 39, 46, 14241-14247 (2006) · Zbl 1148.82314
[303] Girimaji, S. S., Boltzmann kinetic equation for filtered fluid turbulence, Phys. Rev. Lett., 99, 3, Article 034501 pp. (2007)
[304] Yan, Y.; Koplik, J., Flow of power-law fluids in self-affine fracture channels, Phys. Rev. E, 77, 3, 2, Article 036315 pp. (2008)
[305] Derksen, J. J., Drag on random assemblies of spheres in shear-thinning and thixotropic liquids, Phys. Fluids, 21, 8, Article 083302 pp. (2009) · Zbl 1183.76177
[306] Premnath, K. N.; Pattison, M. J.; Banerjee, S., Dynamic subgrid scale modeling of turbulent flows using lattice-Boltzmann method, Physica A, 388, 13, 2640-2658 (2009)
[307] Sungkorn, R.; Derksen, J. J.; Khinast, J. G., Modeling of aerated stirred tanks with shear-thinning power law liquids, Int. J. Heat Fluid Flow, 36, 153-166 (2012)
[308] Geller, S.; Uphoff, S.; Krafczyk, M., Turbulent jet computations based on MRT and cascaded lattice Boltzmann models, Comput. Math. Appl., 65, 12, 1956-1966 (2013) · Zbl 1383.76282
[309] Yong, W.-A.; Luo, L.-S., Nonexistence of H theorems for the athermal lattice Boltzmann models with polynomial equilibria, Phys. Rev. E, 67, Article 051105 pp. (2003)
[310] Yong, W.-A.; Luo, L.-S., Nonexistence of H theorem for some lattice Boltzmann models, J. Stat. Phys., 121, 1/2, 91-103 (2005) · Zbl 1083.82015
[311] He, X.; Luo, L.-S., Lattice Boltzmann model for the incompressible Navier-Stokes equation, J. Stat. Phys., 88, 3/4, 927-944 (1997) · Zbl 0939.82042
[312] Skordos, P. A., Initial and boundary conditions for the lattice Boltzmann method, Phys. Rev. E, 48, 6, 4823-4842 (1993)
[313] Yong, W.-A.; Zhao, W.; Luo, L.-S., Theory of the lattice Boltzmann method: derivation of macroscopic equations via the Maxwell iteration, Phys. Rev. E, 93, 3, Article 033310 pp. (2016)
[314] Dellar, P. J., Bulk and shear viscosities in lattice Boltzmann equations, Phys. Rev. E, 64, 3, Article 031203 pp. (2001)
[315] Dubois, F., Equivalent partial differential equations of a lattice Boltzmann scheme, Comput. Math. Appl., 55, 7, 1441-1449 (2008) · Zbl 1142.76449
[316] Dubois, F., Third order equivalent equation of lattice Boltzmann scheme, Discrete Contin. Dyn. Syst., Ser. A, 23, 1-2, 221-248 (2009) · Zbl 1156.82365
[317] Luo, L.-S., Lattice-gas automata and lattice Boltzmann equations for two-dimensional hydrodynamics (1993), Georgia Institute of Technology: Georgia Institute of Technology Atlanta, available at
[318] Guo, Z.; Zhao, T.; Shi, Y., Preconditioned lattice-Boltzmann method for steady flows, Phys. Rev. E, 70, 6 (2004)
[319] Tekitek, M. M.; Bouzidi, M.; Dubois, F.; Lallemand, P., On numerical reflected waves in lattice Boltzmann schemes, Prog. Comput. Fluid Dyn., 8, 1-4, 49-55 (2008) · Zbl 1138.76055
[320] Tekitek, M. M.; Bouzidi, M.; Dubois, F.; Lallemand, P., Towards perfectly matching layers for lattice Boltzmann equation, Comput. Math. Appl., 58, 5, 903-913 (2009) · Zbl 1189.76415
[321] Dubois, F.; Lallemand, P.; Tekitek, M., On a superconvergent lattice Boltzmann boundary scheme, Comput. Math. Appl., 59, 7, 2141-2149 (2010) · Zbl 1193.76106
[322] Dubois, F.; Lallemand, P.; Tekitek, M. M., Taylor expansion method for linear lattice Boltzmann schemes with an external force: application to boundary conditions, (Abgrall, R.; Beaugendre, H.; Congedo, P. M.; Dobrzynski, C.; Perrier, V.; Ricchiuto, M., High Order Nonlinear Numerical Schemes for Evolutionary PDEs. High Order Nonlinear Numerical Schemes for Evolutionary PDEs, Lecture Notes in Computational Science and Engineering, vol. 99 (2014), Springer International Publishing: Springer International Publishing Cham, Switzerland), 89-107, Ch. 6 · Zbl 1353.76061
[323] Ginzbourg, I.; Adler, P. M., Boundary flow condition analysis for the three-dimensional lattice Boltzmann model, J. Phys. II, 4, 2, 191-214 (1994)
[324] Ginzbourg, I.; d’Humières, D., Local second-order boundary methods for lattice Boltzmann models, J. Stat. Phys., 84, 5/6, 927-971 (1996) · Zbl 1081.82617
[325] Ginzburg, I.; d’Humières, D., Multireflection boundary conditions for lattice Boltzmann models, Phys. Rev. E, 68, 6, Article 066614 pp. (2003)
[326] d’Humières, D.; Ginzburg, I., Viscosity independent numerical errors for lattice Boltzmann models: from recurrence equations to “magic” collision numbers, Comput. Math. Appl., 58, 5, 823-840 (2009) · Zbl 1189.76405
[327] Bouzidi, M.; Firdaouss, M.; Lallemand, P., Momentum transfer of Boltzmann-lattice fluid with boundaries, Phys. Fluids, 13, 11, 3452-3459 (2001) · Zbl 1184.76068
[328] Tucker, P.; Pan, Z., A Cartesian cut cell method for incompressible viscous flow, Appl. Math. Model., 24, 8-9, 591-606 (2000) · Zbl 1056.76059
[329] Meinke, M.; Schneiders, L.; Guenther, C.; Schroeder, W., A cut-cell method for sharp moving boundaries in Cartesian grids, International Workshop on Future of CFD and Aerospace Sciences. International Workshop on Future of CFD and Aerospace Sciences, RIKEN Adv. Inst. Computat. Sci., Kobe, Japan, Apr 23-25, 2012. International Workshop on Future of CFD and Aerospace Sciences. International Workshop on Future of CFD and Aerospace Sciences, RIKEN Adv. Inst. Computat. Sci., Kobe, Japan, Apr 23-25, 2012, Comput. Fluids, 85, SI, 135-142 (2013) · Zbl 1290.76087
[330] Peng, Y.-F.; Mittal, R.; Sau, A.; Hwang, R. R., Nested Cartesian grid method in incompressible viscous fluid flow, J. Comput. Phys., 229, 19, 7072-7101 (2010) · Zbl 1425.76065
[331] Martys, N. S.; Chen, H., Simulations of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method, Phys. Rev. E, 53, 743-750 (1996)
[332] Koch, D. L.; Ladd, A. J.C., Moderate Reynolds number flows through periodic and random arrays of aligned cylinders, J. Fluid Mech., 349, 31-66 (1997) · Zbl 0912.76014
[333] Maier, R. S.; Kroll, D. M.; Kutsovsky, Y. E.; Davis, H. T.; Bernard, R. S., Simulation of flow through bead packs using the lattice Boltzmann method, Phys. Fluids, 10, 1, 60-74 (1998)
[334] Maier, R. S.; Kroll, D. M.; Bernard, R. S.; Howington, S. E.; Peters, J. F.; Davis, H. T., Pore-scale simulation of dispersion, Phys. Fluids, 12, 8, 2065-2079 (2000) · Zbl 1184.76340
[335] Zhang, D.; Zhang, R.; Chen, S.; Soll, V. E., Pore scale study of flow in porous media: scale dependency, REV, and statistical REV, Geophys. Res. Lett., 27, 8, 1195-1198 (2000)
[336] Hill, R. J.; Koch, D. L., Moderate-Reynolds-number flow in wall-bounded porous medium, J. Fluid Mech., 453, 315-344 (2002) · Zbl 1004.76085
[337] Hill, R. J.; Koch, D. L., The transition from steady to weakly turbulent flow in a close-packed ordered array of spheres, J. Fluid Mech., 465, 59-97 (2002) · Zbl 1042.76033
[338] Keehm, Y.; Mukerji, T.; Nur, A., Permeability prediction from thin sections: 3D reconstruction and lattice-Boltzmann flow simulation, Geophys. Res. Lett., 31, Article L04606 pp. (2004)
[339] Porter, B.; Zauel, R.; Stockman, H.; Guldberg, R.; Fyhrie, D., 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor, J. Biomech., 38, 3, 543-549 (2005)
[340] van der Hoef, M. A.; Beetstra, R.; Kuipers, J. A.M., Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of spheres: results for the permeability and drag force, J. Fluid Mech., 528, 233-254 (2005) · Zbl 1165.76369
[341] Vogel, H.; Tölke, J.; Schulz, V.; Krafczyk, M.; Roth, K., Comparison of a lattice-Boltzmann model, a full-morphology model, and a pore network model for determining capillary pressure-saturation relationships, Vadose Zone J., 4, 2, 380-388 (2005)
[342] Pan, C.; Luo, L.-S.; Miller, C., An evaluation of lattice Boltzmann schemes for porous medium flow simulation, Comput. Fluids, 35, 8/9, 898-909 (2006) · Zbl 1177.76323
[343] Blunt, M. J.; Bijeljic, B.; Dong, H.; Gharbi, O.; Iglauer, S.; Mostaghimi, P.; Paluszny, A.; Pentland, C., Pore-scale imaging and modelling, Adv. Water Resour., 51, 197-216 (2013)
[344] Lallemand, P.; Luo, L.-S., Lattice Boltzmann method for moving boundaries, J. Comput. Phys., 184, 2, 406-421 (2003) · Zbl 1062.76555
[345] Zhang, J.; Liu, N.-S.; Lu, X.-Y., Locomotion of a passively flapping flat plate, J. Fluid Mech., 659, 43-68 (2010) · Zbl 1205.76319
[346] Favier, J.; Revell, A.; Pinelli, A., A lattice Boltzmann-immersed boundary method to simulate the fluid interaction with moving and slender flexible objects, J. Comput. Phys., 261, 145-161 (2014) · Zbl 1349.76679
[347] Ladd, A. J.C., Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech., 271, 285-309 (1994) · Zbl 0815.76085
[348] Aidun, C. K.; Lu, Y.; Ding, E., Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation, J. Fluid Mech., 373, 287-311 (1998) · Zbl 0933.76092
[349] Qi, D., Lattice-Boltzmann simulations of particles in non-zero-Reynolds-number flows, J. Fluid Mech., 385, 41-62 (1999) · Zbl 0938.76089
[350] Ladd, A. J.C.; Verberg, R., Lattice-Boltzmann simulations of particle-fluid suspensions, J. Stat. Phys., 104, 5-6, 1191-1251 (2001) · Zbl 1046.76037
[351] Qi, D.; Luo, L.-S., Transitions in rotations of a nonspherical particle in a three-dimensional moderate Reynolds number Couette flow, Phys. Fluids, 14, 12, 4440-4443 (2002) · Zbl 1185.76305
[352] Qi, D.; Luo, L.-S., Rotational and orientational behaviour of a three-dimensional spheroidal particles in Couette flow, J. Fluid Mech., 477, 201-213 (2003) · Zbl 1063.76542
[353] Qi, D.; Luo, L.-S.; Aravamuthan, R.; Strieder, W., Lateral migration and orientation of elliptical particles in Poiseuille flows, J. Stat. Phys., 107, 1/2, 102-120 (2002) · Zbl 1126.82328
[354] Huang, H.; Yang, X.; Krafczyk, M.; Lu, X.-Y., Rotation of spheroidal particles in Couette flows, J. Fluid Mech., 692, 369-394 (2012) · Zbl 1250.76172
[355] Metzger, B.; Rahli, O.; Yin, X., Heat transfer across sheared suspensions: role of the shear-induced diffusion, J. Fluid Mech., 724, 527-552 (2013) · Zbl 1287.76228
[356] Haddadi, H.; Morris, J. F., Microstructure and rheology of finite inertia neutrally buoyant suspensions, J. Fluid Mech., 749, 431-459 (2014)
[357] Haddadi, H.; Shojaei-Zadeh, S.; Connington, K.; Morris, J. F., Suspension flow past a cylinder: particle interactions with recirculating wakes, J. Fluid Mech., 760, R2 (2014)
[358] Mao, W.; Alexeev, A., Motion of spheriod particles in shear flow with inertia, J. Fluid Mech., 749, 145-166 (2014)
[359] Sui, Y.; Low, H. T.; Chew, Y. T.; Roy, P., Tank-treading, swinging, and tumbling of liquid-filled elastic capsules in shear flow, Phys. Rev. E, 77, 1, 2, Article 016310 pp. (2008)
[360] MacMeccan, R. M.; Clausen, J. R.; Neitzel, G. P.; Aidun, C. K., Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method, J. Fluid Mech., 618, 13-39 (2009) · Zbl 1156.76455
[361] Wu, J.; Aidun, C. K., A numerical study of the effect of fibre stiffness on the rheology of sheared flexible fibre suspensions, J. Fluid Mech., 662, 123-133 (2010) · Zbl 1205.76275
[362] Clausen, J. R.; Reasor, D. A.; Aidun, C. K., The rheology and microstructure of concentrated non-colloidal suspensions of deformable capsules, J. Fluid Mech., 685, 202-234 (2011) · Zbl 1241.76394
[363] Salahuddin, A.; Wu, J.; Aidun, C. K., Numerical study of rotational diffusion in sheared semidilute fibre suspension, J. Fluid Mech., 692, 153-182 (2012) · Zbl 1250.76175
[364] Gounley, J.; Peng, Y., Shape recovery of elastic capsules from shear flow induced deformation, Commun. Comput. Phys., 16, 1, 56-74 (2014) · Zbl 1373.76357
[365] Krüger, T.; Kaoui, B.; Harting, J., Interplay of inertia and deformability on rheological properties of a suspension of capsules, J. Fluid Mech., 751, 725-745 (2014)
[366] Gounley, J.; Peng, Y., Computational modeling of membrane viscosity of red blood cells, Commun. Comput. Phys., 17, 4, 1073-1087 (2015) · Zbl 1373.76358
[367] Rosen, T.; Do-Quang, M.; Aidun, C. K.; Lundell, F., The dynamical states of a prolate spheroidal particle suspended in shear flow as a consequence of particle and fluid inertia, J. Fluid Mech., 771, 115-158 (2015)
[368] Verhaeghe, F.; Luo, L.-S.; Blanpain, B., Lattice Boltzmann modeling of microchannel flow in slip flow regime, J. Comput. Phys., 228, 1, 147-157 (2009) · Zbl 1277.76087
[369] Chen, H.; Chen, S.; Matthaeus, H. W., Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method, Phys. Rev. A, 45, 8, R5339-R5342 (1992)
[370] Qian, Y.; d’Humières, D.; Lallemand, P., Lattice BGK models for Navier-Stokes equation, Europhys. Lett., 17, 6, 479-484 (1992) · Zbl 1116.76419
[371] He, X.; Zou, Q.; Luo, L.-S.; Dembo, M., Analytic solutions and analysis on non-slip boundary condition for the lattice Boltzmann BGK model, J. Stat. Phys., 87, 1/2, 115-136 (1997) · Zbl 0937.82043
[372] Guo, Z.; Zheng, C.; Shi, B., Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow, Phys. Rev. E, 77, 3, Article 036707 pp. (2008)
[373] Luo, L.-S.; Liao, W.; Chen, X.; Peng, Y.; Zhang, W., Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations, Phys. Rev. E, 83, 5, Article 056710 pp. (2011)
[374] Reis, T.; Dellar, P. J., Lattice Boltzmann simulations of pressure-driven flows in micro channels using Navier-Maxwell slip boundary conditions, Phys. Fluids, 24, 11, Article 112001 pp. (2012) · Zbl 1309.76168
[375] Guo, Z.; Zheng, C.; Shi, B., An extrapolation method for boundary conditions in lattice Boltzmann method, Phys. Fluids, 14, 6, 2007-2010 (2002) · Zbl 1185.76156
[376] Mei, R.; Luo, L.-S.; Lallemand, P.; d’Humières, D., Consistent initial conditions for lattice Boltzmann simulations, Comput. Fluids, 35, 855-862 (2006) · Zbl 1177.76319
[377] Lai, M.; Peskin, C., An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. Comput. Phys., 160, 2, 705-719 (2000) · Zbl 0954.76066
[378] Peskin, C. S., The immersed boundary method, Acta Numer., 11, 479-517 (2002) · Zbl 1123.74309
[379] Zhu, L.; Peskin, C., Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method, J. Comput. Phys., 179, 2, 452-468 (2002) · Zbl 1130.76406
[380] Lallemand, P.; Luo, L.-S.; Peng, Y., A lattice Boltzmann front-tracking method for interface dynamics with surface tension in two dimensions, J. Comput. Phys., 226, 2, 1367-1384 (2007) · Zbl 1173.76394
[381] Peng, Y.; Luo, L.-S., A comparative study of immersed-boundary and interpolated bounce-back methods in LBE, Prog. Comput. Fluid Dyn., 8, 1-4, 156-167 (2008) · Zbl 1388.76306
[382] Zhou, Q.; Fan, L.-S., A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows, J. Comput. Phys., 268, 269-301 (2014) · Zbl 1349.76758
[383] Li, Z.; Favier, J.; D’Ortona, U.; Poncet, S., An immersed boundary-lattice Boltzmann method for single- and multi-component fluid flows, J. Comput. Phys., 304, 424-440 (2016) · Zbl 1349.76708
[384] Filippova, O.; Hänel, D., Grid refinement for lattice-BGK models, J. Comput. Phys., 147, 1, 219-228 (1998) · Zbl 0917.76061
[385] Geier, M.; Greiner, A.; Korvink, J. G., Bubble functions for the lattice Boltzmann method and their application to grid refinement, Eur. Phys. J. Spec. Top., 171, 1, 173-179 (2009)
[386] Schönherr, M.; Kucher, K.; Geier, M.; Stiebler, M.; Freudiger, S.; Krafczyk, M., Multi-thread implementations of the lattice Boltzmann method on non-uniform grids for CPUs and GPUs, Comput. Math. Appl., 61, 12, 3730-3743 (2011)
[387] Schönherr, M., Towards reliable LES-CFD computations based on advanced LBM models utilizing (multi-) GPGPU hardware (2015), Technische Universität Braunschweig: Technische Universität Braunschweig Germany, Ph.D. thesis
[388] Kian Far, E.; Geier, M.; Kutscher, K.; Krafczyk, M., Distributed cumulant lattice Boltzmann simulation of the dispersion process of ceramic agglomerates, J. Comput. Methods Sci. Eng., 16, 2, 231-252 (2016)
[389] Minion, M. L.; Brown, D. L., Performance of under-resolved two-dimensional incompressible flow simulations, II, J. Comput. Phys., 138, 2, 734-765 (1997) · Zbl 0914.76063
[390] Augier, A.; Dubois, F.; Graille, B.; Lallemand, P., On rotational invariance of lattice Boltzmann schemes, Comput. Math. Appl., 67, 2, 239-255 (2014) · Zbl 1381.76276
[391] Somers, J. A., Direct simulation of fluid flow with cellular automata and the lattice-Boltzmann equation, Appl. Sci. Res., 51, 127-133 (1993) · Zbl 0778.76043
[392] Martinez, D.; Matthaeus, W.; Chen, S.; Montgomery, D., Comparison of spectral method and lattice Boltzmann simulations of 2-dimensional hydrodynamics, Phys. Fluids, 6, 3, 1285-1298 (1994) · Zbl 0826.76069
[393] Benzi, R.; Struglia, M. V.; Tripiccione, R., Extended self-similarity in numerical simulations of three-dimensional anisotropic turbulence, Phys. Rev. E, 53, R5565-R5568 (1996)
[394] ten Cate, A.; Derksen, J.; Portela, L.; van den Akker, H., Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence, J. Fluid Mech., 519, 233-271 (2004) · Zbl 1065.76194
[395] Yu, H.; Girimaji, S. S.; Luo, L.-S., DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method, J. Comput. Phys., 209, 2, 599-616 (2005) · Zbl 1138.76373
[396] Yu, H.; Girimaji, S. S., Near-field turbulent simulations of rectangular jets using lattice Boltzmann method, Phys. Fluids, 17, 12, Article 125106 pp. (2005) · Zbl 1188.76179
[397] Yu, H.; Girimaji, S.; Luo, L.-S., Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence, Phys. Rev. E, 71, 1, Article 016708 pp. (2005)
[398] Yu, D.; Girimaji, S., Direct numerical simulations of homogeneous turbulence subject to periodic shear, Phys. Rev. E, 71, 1, Article 016708 pp. (2005)
[399] Yu, D.; Girimaji, S. S., DNS of homogeneous shear turbulence revisited with the lattice Boltzmann method, J. Turbul., 6, N6 (2005)
[400] Burattini, P.; Lavoie, P.; Agrawal, A.; Djenidi, L.; Antonia, R. A., Power law of decaying homogeneous isotropic turbulence at low Reynolds number, Phys. Rev. E, 73, 6, Article 066304 pp. (2006)
[401] Djenidi, L.; Moghtaderi, B., Numerical investigation of laminar mixing in a coaxial microreactor, J. Fluid Mech., 568, 223-242 (2006) · Zbl 1105.76046
[402] Izawa, W. A.K. S.; Xiong, A. K.; Fukunishi, Y., Identification of multi-scale coherent eddy structures in a homogeneous isotropic turbulence, Prog. Comput. Fluid Dyn., 6, 7, 402-408 (2006) · Zbl 1189.76314
[403] ten Cate, A.; van Vliet, E.; Derksen, J.; van den Akker, H., Application of spectral forcing in lattice-Boltzmann simulations of homogeneous turbulence, Comput. Fluids, 35, 10, 1239-1251 (2006) · Zbl 1177.76337
[404] Dong, Y.-H.; Sagaut, P.; Marie, S., Inertial consistent subgrid model for large-eddy simulation based on the lattice Boltzmann method, Phys. Fluids, 20, 3, Article 035104 pp. (2008) · Zbl 1182.76212
[405] Dong, Y.-H.; Sagaut, P., A study of time correlations in lattice Boltzmann-based large-eddy simulation of isotropic turbulence, Phys. Fluids, 20, 3, Article 035105 pp. (2008) · Zbl 1182.76211
[406] Djenidi, L.; Tardu, S. F., On the anisotropy of a low-Reynolds-number grid turbulence, J. Fluid Mech., 702, 332-353 (2012) · Zbl 1248.76094
[407] Djenidi, L.; Tardu, S. F.; Antonia, R. A., Relationship between temporal and spatial averages in grid turbulence, J. Fluid Mech., 730, 593-606 (2013) · Zbl 1291.76158
[408] Djenidi, L.; Antonia, R. A., Transport equation for the mean turbulent energy dissipation rate in low-R-lambda grid turbulence, J. Fluid Mech., 747, 288-315 (2014) · Zbl 1371.76078
[409] Lefeuvre, N.; Thiesset, F.; Djenidi, L.; Antonia, R. A., Statistics of the turbulent kinetic energy dissipation rate and its surrogates in a square cylinder wake flow, Phys. Fluids, 26, 9, Article 095104 pp. (2014)
[410] Menon, S.; Soo, J., Simulation of vortex dynamics in three-dimensional synthetic and free jets using the large-eddy lattice Boltzmann method, J. Turbul., 5, Article 032 pp. (2004)
[411] Löhner, R., Towards overcoming the LES crisis, Int. J. Comput. Fluid Dyn., 33, 3, 87-97 (2019)
[412] Derksen, J. J.; van den Akker, H. E.A., Simulation of vortex core precession in a reverse-flow cyclone, AIChE J., 46, 1317-1331 (2000)
[413] Cheng, M.; Luo, L.-S., Characteristics of two-dimensional flow around a rotating circular cylinder near a plane wall, Phys. Fluids, 19, 6, Article 063601 pp. (2007) · Zbl 1182.76145
[414] Cheng, M.; Lou, J.; Lim, T. T., Motion of a vortex ring in a simple shear flow, Phys. Fluids, 21, 8, Article 081701 pp. (2009) · Zbl 1183.76144
[415] Cheng, M.; Lou, J.; Luo, L.-S., Numerical study of a vortex ring impacting a flat wall, J. Fluid Mech., 660, 430-455 (2010) · Zbl 1205.76084
[416] Cheng, M.; Lou, J.; Lim, T. T., Vortex ring with swirl: a numerical study, Phys. Fluids, 22, 9, Article 097101 pp. (2010)
[417] Ponta, F. L., Vortex decay in the Kármán eddy street, Phys. Fluids, 22, 9, Article 093601 pp. (2010)
[418] Toth, G.; Hazi, G., Merging of shielded Gaussian vortices and formation of a tripole at low Reynolds numbers, Phys. Fluids, 22, 5, Article 053101 pp. (2010) · Zbl 1190.76124
[419] Cheng, M.; Lou, J.; Lim, T. T., A numerical study of a vortex ring impacting a permeable wall, Phys. Fluids, 26, 10, Article 103602 pp. (2014)
[420] Cheng, M.; Lou, J.; Lim, T. T., Leapfrogging of multiple coaxial viscous vortex rings, Phys. Fluids, 27, 3, Article 031702 pp. (2015)
[421] Buick, J.; Greated, C.; Campbell, D., Lattice BGK simulation of sound waves, Europhys. Lett., 43, 3, 235-240 (1998)
[422] Wilde, A., Calculation of sound generation and radiation from instationary flows, Comput. Fluids, 35, 8/9, 986-993 (2006) · Zbl 1177.76336
[423] Barrios, G.; Rechtman, R., Dynamics of an acoustically levitated particle using the lattice Boltzmann method, J. Fluid Mech., 596, 191-200 (2008) · Zbl 1131.76046
[424] Ricot, D.; Maríe, S.; Sagaut, P.; Bailly, C., Lattice Boltzmann method with selective viscosity filter, J. Comput. Phys., 228, 12, 4478-4490 (2009) · Zbl 1395.76073
[425] Muto, M.; Tsubokura, M.; Oshima, N., Negative Magnus lift on a rotating sphere at around the critical Reynolds number, Phys. Fluids, 24, 1, Article 014102 pp. (2012)
[426] Almedeij, J., Drag coefficient of flow around a sphere: matching asymptotically the wide trend, Powder Technol., 186, 3, 218-223 (2008)
[427] Morrison, F. A., An Introduction to Fluid Mechanics (2013), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1283.76003
[428] Loth, E., Compressibility and rarefaction effects on drag of a spherical particle, AIAA J., 46, 9, 2219-2228 (2008)
[429] Xiong, Q.; Li, B.; Xu, J.; Wang, X.; Wang, L.; Ge, W., Efficient 3D DNS of gas-solid flows on Fermi GPGPU, Comput. Fluids, 70, 86-94 (2012) · Zbl 1365.76267
[430] Banari, A.; Janssen, C.; Grilli, S. T.; Krafczyk, M., Efficient GPGPU implementation of a lattice Boltzmann model for multiphase flows with high density ratios, Comput. Fluids, 93, 1-17 (2014) · Zbl 1391.76597
[431] Nie, X.; Doolen, G.; Chen, S., Lattice-Boltzmann simulations of fluid flows in MEMS, J. Stat. Phys., 107, 1-2, 279-289 (2002) · Zbl 1007.82007
[432] Succi, S., Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis, Phys. Rev. Lett., 89, 6 (2002)
[433] Li, B.; Kwok, D., Discrete Boltzmann equation for microfluidics, Phys. Rev. Lett., 90, 12 (2003)
[434] Toschi, F.; Succi, S., Lattice Boltzmann method at finite Knudsen numbers, Europhys. Lett., 69, 4, 549-555 (2005)
[435] Ansumali, S.; Karlin, I.; Frouzakis, C.; Boulouchos, K., Entropic lattice Boltzmann method for microflows, Physica A, 359, 289-305 (2006)
[436] Zhang, R.; Shan, X.; Chen, H., Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation, Phys. Rev. E, 74, 4, 2, Article 046703 pp. (2006)
[437] Zhou, Y.; Zhang, R.; Staroselsky, I.; Chen, H.; Kim, W.; Jhon, M., Simulation of micro- and nano-scale flows via the lattice Boltzmann method, Physica A, 362, 1, 68-77 (2006)
[438] Kim, S. H.; Pitsch, H.; Boyd, I. D., Accuracy of higher-order lattice Boltzmann methods for microscale flows with finite Knudsen numbers, J. Comput. Phys., 227, 19, 8655-8671 (2008) · Zbl 1147.82027
[439] Shi, Y.; Brookes, P. L.; Yap, Y. W.; Sader, J. E., Accuracy of the lattice Boltzmann method for low-speed noncontinuum flows, Phys. Rev. E, 83, 4 (2011), 045701(R)
[440] Liou, T.-M.; Lin, C.-T., Study on microchannel flows with a sudden contraction-expansion at a wide range of Knudsen number using lattice Boltzmann method, Microfluid. Nanofluid., 16, 1-2, 315-327 (2014)
[441] Yang, L. M.; Shu, C.; Wu, J.; Wang, Y., Comparative study of discrete velocity method and high-order lattice Boltzmann method for simulation of rarefied flows, Comput. Fluids, 146, 125-142 (2017) · Zbl 1390.76785
[442] Shen, C.; Tian, D. B.; Xie, C.; Fan, J., Examination of the LBM in simulation of microchannel flow in transitional regime, Microscale Thermophys. Eng., 8, 4, 423-432 (2004)
[443] Luo, L.-S., Comment on “Discrete Boltzmann equation for microfluidics”, Phys. Rev. Lett., 92, 13, Article 139401 pp. (2004)
[444] Luo, L.-S., Some recent results on discrete velocity models and ramifications for lattice Boltzmann equation, 8th International Symposium on the Discrete Simulation of Fluid Dynamics (LGA99). 8th International Symposium on the Discrete Simulation of Fluid Dynamics (LGA99), Univ Tokyo, Tokyo, Japan, Jul 28-30, 1999. 8th International Symposium on the Discrete Simulation of Fluid Dynamics (LGA99). 8th International Symposium on the Discrete Simulation of Fluid Dynamics (LGA99), Univ Tokyo, Tokyo, Japan, Jul 28-30, 1999, Comput. Phys. Commun., 129, 1-3, 63-74 (2000) · Zbl 0983.76072
[445] Broadwell, J. E., Shock structure in a simple discrete velocity gas, Phys. Fluids, 7, 8, 1243-1247 (1964) · Zbl 0123.21102
[446] Babovsky, H.; Padula, M., A new contribution to nonlinear stability of a discrete velocity model, Commun. Math. Phys., 144, 1, 87-106 (1992) · Zbl 0745.76073
[447] Mieussens, L., Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries, J. Comput. Phys., 162, 2, 429-466 (2000) · Zbl 0984.76070
[448] Cabannes, H.; Gatignol, R.; Luo, L.-S., The Discrete Boltzmann Equation: Theory and Applications (2003), Lecture Notes given by Cabannes at University of California, Berkeley, 1980 · Zbl 1140.82323
[449] Andallah, L. S.; Babovsky, H., A discrete Boltzmann equation based on hexagons, Math. Models Methods Appl. Sci., 13, 11, 1537-1563 (2003) · Zbl 1053.82026
[450] Babovsky, H.; Płatkowski, T., Kinetic boundary layers for the Boltzmann equation on discrete velocity lattices, Arch. Mech., 60, 1, 87-116 (2008) · Zbl 1161.76566
[451] Babovsky, H., A numerical model for the Boltzmann equation with applications to micro flows, Comput. Math. Appl., 58, 4, 791-804 (2009) · Zbl 1189.76431
[452] Brechtken, S.; Sasse, T., Normal, high order discrete velocity models of the Boltzmann equation, Comput. Math. Appl., 75, 2, 503-519 (2018) · Zbl 1409.82012
[453] Bobylev, A. V.; Palczewski, A.; Schneider, J., On approximation of the Boltzmann-equation by discrete velocity models, C. R. Acad. Sci., Sér. 1 Math., 320, 5, 639-644 (1995) · Zbl 0834.76078
[454] Palczewski, A.; Schneider, J.; Bobylev, A. V., A consistency result for a discrete-velocity model of the Boltzmann equation, SIAM J. Numer. Anal., 34, 5, 1865-1883 (1997) · Zbl 0895.76083
[455] Wagner, W., Approximation of the Boltzmann-equation by discrete velocity models, J. Stat. Phys., 78, 5-6, 1555-1570 (1995) · Zbl 1080.82576
[456] Mieussens, L., Convergence of a discrete-velocity model for the Boltzmann-BGK equation, C. R. Acad. Sci., Sér. I Math., 328, 12, 1231-1236 (1999) · Zbl 0933.82034
[457] Guo, Z.; Zhao, T.; Shi, Y., Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equation for microgas flows, J. Appl. Phys., 99, 7 (2006)
[458] Ambruş, V. E.; Sofonea, V., Application of mixed quadrature lattice Boltzmann models for the simulation of Poiseuille flow at non-negligible values of the Knudsen number, J. Comput. Sci., 17, 2, SI, 403-417 (2016)
[459] Briggs, W. L.; Henson, V. E.; McCormick, S. F., A Multigrid Tutorial (2000), SIAM: SIAM Philadelphia, PA · Zbl 0958.65128
[460] Trottenberg, U.; Oosterlee, C. W.; Schuller, A., Multigrid (2001), Academic Press: Academic Press London · Zbl 0976.65106
[461] Tölke, J.; Krafczyk, M.; Rank, E., A multigrid solver for the discrete Boltzmann equation, J. Stat. Phys., 107, 573-591 (2002) · Zbl 1007.82004
[462] Mavriplis, D. J., Multigrid solution of the steady-state lattice Boltzmann equation, Comput. Fluids, 35, 8/9, 793-804 (2005) · Zbl 1177.76318
[463] Patil, D. V.; Premnath, K. N.; Banerjee, S., Multigrid lattice Boltzmann method for accelerated solution of elliptic equations, J. Comput. Phys., 265, 172-194 (2014) · Zbl 1349.76725
[464] Tölke, J.; Krafczyk, M.; Schulz, M.; Rank, E.; Berrios, R., Implicit discretization and nonuniform mesh refinement approaches for FD discretizations of LBGK models, Int. J. Mod. Phys. C, 9, 1143-1157 (1998)
[465] Rector, D. R.; Stewart, M. L., A semi-implicit lattice method for simulating flow, J. Comput. Phys., 229, 19, 6732-6743 (2010) · Zbl 1425.76201
[466] Huang, J.; Yang, C.; Cai, X.-C., A fully implicit method for lattice Boltzmann equations, SIAM J. Sci. Comput., 37, 5, S291-S313 (2015) · Zbl 1325.76144
[467] Li, W.; Luo, L.-S., Finite-volume lattice Boltzmann method for nearly incompressible flows on arbitrary unstructured meshes, Commun. Comput. Phys., 20, 2, 301-324 (2016) · Zbl 1373.76256
[468] Li, W.; Li, W.; Song, P.; Ji, H., A conservation-moment-based implicit finite volume lattice Boltzmann method for steady nearly incompressible flows, J. Comput. Phys., 398 (2019), UNSP 108882 · Zbl 1453.76169
[469] Ding, E. J., Accelerated algorithm for computing the motion of solid particles suspended in fluid, Phys. Rev. E, 80, 2, Article 025701 pp. (2009)
[470] Ding, E. J., Calculation of drag and torque coefficients by time-independent lattice-Boltzmann method, Phys. Rev. E, 90, 3, Article 033313 pp. (2014)
[471] Ding, E. J., Lattice Boltzmann Stokesian dynamics, Phys. Rev. E, 92, 5, Article 053303 pp. (2015)
[472] Ding, E. J., Time-independent lattice Boltzmann method calculation of hydrodynamic interactions between two particles, Phys. Rev. E, 91, 6, Article 063308 pp. (2015)
[473] McCracken, M.; Abraham, J., Multiple-relaxation-time lattice-Boltzmann model for multiphase flow, Phys. Rev. E, 71, 3, Article 036701 pp. (2005)
[474] Premnath, K.; Abraham, J., Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow, J. Comput. Phys., 224, 2, 539-559 (2007) · Zbl 1116.76066
[475] Peng, C.; Ayala, O. M.; Wang, L.-P., A comparative study of immersed boundary method and interpolated bounce-back scheme for no-slip boundary treatment in the lattice Boltzmann method: part I, laminar flows, Comput. Fluids, 192 (2019), UNSP 104233 · Zbl 1519.76258
[476] Peng, C.; Ayala, O. M.; de Motta, J. C.B.; Wang, L.-P., A comparative study of immersed boundary method and interpolated bounce-back scheme for no-slip boundary treatment in the lattice Boltzmann method: part II, turbulent flows, Comput. Fluids, 192 (2019), UNSP 104251 · Zbl 1519.76257
[477] Liu, H.; Zhang, Y., Phase-field modeling droplet dynamics with soluble surfactants, J. Comput. Phys., 229, 24, 9166-9187 (2010) · Zbl 1427.76187
[478] Liu, H.; Valocchi, A. J.; Zhang, Y.; Kang, Q., Lattice Boltzmann phase-field modeling of thermocapillary flows in a confined microchannel, J. Comput. Phys., 256, 334-356 (2014) · Zbl 1349.76711
[479] Rojas, R.; Takaki, T.; Ohno, M., A phase-field-lattice Boltzmann method for modeling motion and growth of a dendrite for binary alloy solidification in the presence of melt convection, J. Comput. Phys., 298, 29-40 (2015) · Zbl 1349.76731
[480] Yaji, K.; Yamada, T.; Yoshino, M.; Matsumoto, T.; Izui, K.; Nishiwaki, S., Topology optimization using the lattice Boltzmann method incorporating level set boundary expressions, J. Comput. Phys., 274, 158-181 (2014) · Zbl 1351.76255
[481] Zhou, L.; Qu, Z. G.; Chen, L.; Tao, W. Q., Lattice Boltzmann simulation of gas-solid adsorption processes at pore scale level, J. Comput. Phys., 300, 800-813 (2015) · Zbl 1349.76757
[482] Guo, Z.; Zheng, C.; Shi, B., Force imbalance in lattice Boltzmann equation for two-phase flows, Phys. Rev. E, 83, 3, Article 036707 pp. (2011)
[483] van Leer, B., Computational fluid dynamics: Science or toolbox (2001), AIAA Paper 2001-2520
[484] Klar, A., Relaxation scheme for a lattice-Boltzmann-type discrete velocity model and numerical Navier-Stokes limit, J. Comput. Phys., 148, 2, 416-432 (1999) · Zbl 0931.76074
[485] Jin, S.; Xin, Z., The relaxation schemes for systems of conservation-laws in arbitrary space dimensions, Commun. Pure Appl. Math., 48, 3, 235-276 (1995) · Zbl 0826.65078
[486] Nishikawa, H., A first-order system approach for diffusion equation. I: second-order residual-distribution schemes, J. Comput. Phys., 227, 1, 315-352 (2007) · Zbl 1127.65062
[487] Ohwada, T., On the construction of kinetic schemes, J. Comput. Phys., 177, 1, 156-175 (2002) · Zbl 1007.76048
[488] Ohwada, T.; Fukata, S., Simple derivation of high-resolution schemes for compressible flows by kinetic approach, J. Comput. Phys., 211, 2, 424-447 (2006) · Zbl 1138.76409
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.