×

On the integrability of a system describing the stationary solutions in Bose-Fermi mixtures. (English) Zbl 1353.37119

Summary: We study the integrability of a Hamiltonian system describing the stationary solutions in Bose-Fermi mixtures in one dimensional optical lattices. We prove that the system is integrable in the Liouville sense only when it is separable in three generic cases. The proof is based on the differential Galois approach and the Ziglin-Morales-Ramis method.

MSC:

37J30 Obstructions to integrability for finite-dimensional Hamiltonian and Lagrangian systems (nonintegrability criteria)
35Q55 NLS equations (nonlinear Schrödinger equations)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Acosta-Humánez, P.; Blázquez-Sanz, D., Non-integrability of some Hamiltonians with rational potentials, Discret Contin Dynam Syst Ser B, 10, 265-293 (2008) · Zbl 1175.37060
[2] Acosta-Humánez, P., Galoisian approach to supersymmetric quantum mechanics, The integrability analysis of the Schrödinger equation by means of differential Galois theory, Dr Müller (2010), VDM Verlag: VDM Verlag Berlin
[3] Acosta-Humánez, P.; Morales-Ruiz, J.; Weil, J.-A., Galoisian approach to integrability of Schrödinger equation, Rep Math Phys, 67, 3, 305-374 (2011) · Zbl 1238.81090
[4] Belmonte-Beitia, J.; Perez-Garcia, VM.; Vekslerchik, V., Modulational instability, solitons and periodic waves in models of quantum degenerate boson-fermion mixtures, Chaos Soliton Fractal, 32, 77-1268 (2007) · Zbl 1131.82022
[5] Bludov, Yu.; Santhanam, J.; Kenkre, VM.; Konotop, VV., Matter waves of Bose-Fermi mixtures in one-dimensional optical lattices, Phys Rev A, 74 (2006), 043620, 14 pp
[6] Duval, A.; Loday-Richaud, M., Kovacic algorithm and its application to some families of special functions, Appl Algebra Eng Commun Comput, 3, 3, 211-246 (1992) · Zbl 0785.12003
[7] Guckenheimer, J.; Holmes, P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields (1983), Springer: Springer New York · Zbl 0515.34001
[8] Karpiuk, T.; Brewczyk, M.; Ospelkaus-Schwarzer, S.; Bongs, K.; Gajda, M.; Rzazewski, K., Soliton trains in Bose-Fermi mixtures, Phys Rev Lett (2004), 100410, 4 pp
[9] Kostov, N.; Gerdjikov, V.; Valchev, T., Exact solutions for equations of Bose-Fermi mixtures in one-dimensional optical lattice, SIGMA, 3 (2007), 071, 14 pp · Zbl 1139.82316
[10] Maciejewski, A.; Przybylska, M., All meromorphically integrable 2D Hamiltonian systems with homogeneous potential of degree 3, Phys Lett A, 327, 461-473 (2004) · Zbl 1138.37325
[11] Morales-Ruiz, J.; Simó, C., Non-integrability criteria for Hamiltonians in the case of Lamé normal variational equations, J Diff Eq, 129, 111-135 (1996) · Zbl 0866.58034
[12] Morales-Ruiz, J., Differential Galois theory and non integrability of Hamiltonian systems, Progress in Mathematics, vol. 179 (1999), Birkhäuser · Zbl 0934.12003
[13] Morales-Ruiz, J.; Ramis, J-P.; Simó, C., Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Ann Scient Ec Norm Sup, 40, 845-884 (2007) · Zbl 1144.37023
[14] Morales-Ruiz, J.; Ramis, J-P., Integrability of dynamical systems through differential Galois theory: Practical guide, Contemporary Math, 509, 143-220 (2010) · Zbl 1294.37024
[15] Morales Ruiz, J., A note on a connection between the Poincaré-Arnold-Melnikov integral and the Picard-Vessiot Theory, 58, 165-175 (2002), Banach Center Publ · Zbl 1035.37041
[16] Perelomov, A., Integrable systems of classical mechanics and lie algebras, vol. I (1990), Birkhäuser: Birkhäuser Basel · Zbl 0717.70003
[17] Przybylska, M.; Szumińsky, W., Non-integrability of flail triple pendulum, Chaos Soliton Fractal, 53, 60-74 (2013) · Zbl 1341.34052
[18] Rosemann, S.; Schöbel, K., Open problems in the theory of finite-dimensional integrable systems and related fields, J Geom Phys, 87, 396-414 (2015) · Zbl 1310.37024
[19] Salerno, M., Matter-wave quantum dots and antidots in ultracold atomic Bose-Fermi mixtures, Phys Rev A, 72 (2005), 063602, 7 pp
[20] van der Put, M.; Singer, M., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, vol. 328 (2003), Springer: Springer Berlin · Zbl 1036.12008
[21] Wojciechowski, S., Integrability of one particle in a perturbed central quartic potential, Phys Scripta, 31, 433-438 (1985) · Zbl 1063.70521
[22] Ziglin, S., Self-intersection of the complex separatrices and the non-existence of integrals in the Hamiltonian systems with one-and-half degrees of freedom, J Appl Math Mech, 45, 411-413 (1982) · Zbl 0503.70012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.