×

On the center of mass of asymptotically hyperbolic initial data sets. (English) Zbl 1398.83010

Summary: We define the (total) center of mass for suitably asymptotically hyperbolic time-slices of asymptotically anti-de Sitter spacetimes in general relativity. We do so in analogy to the picture that has been consolidated for the (total) center of mass of suitably asymptotically Euclidean time-slices of asymptotically Minkowskian spacetimes (isolated systems). In particular, we unite – an altered version of – the approach based on Hamiltonian charges with an approach based on CMC-foliations near infinity. The newly defined center of mass transforms appropriately under changes of the asymptotic coordinates and evolves in the direction of an appropriately defined linear momentum under the Einstein evolution equations.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
53C20 Global Riemannian geometry, including pinching
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Andersson L., Cai M., Galloway G.J.: Rigidity and positivity of mass for asymptotically hyperbolic manifolds. Ann. Henri Poincaré 9(1), 1-33 (2008) · Zbl 1134.81037 · doi:10.1007/s00023-007-0348-2
[2] Arnowitt R., Deser S., Misner C.W.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. 122(3), 997-1006 (1961) · Zbl 0094.23003 · doi:10.1103/PhysRev.122.997
[3] Bartnik R.: The mass of an asymptotically flat manifold. Commun. Pure App. Math. 39, 661-693 (1986) · Zbl 0598.53045 · doi:10.1002/cpa.3160390505
[4] Bartnik, R., Isenberg, J.: The constraint equations. The Einstein equations and the large scale behavior of gravitational fields. In: 50 Years of the Cauchy problem in general relativity. With DVD, Basel: Birkhäuser, 2004, pp. 1-38 (English) · Zbl 1073.83009
[5] Beig R., Ó Murchadha N.: The poincaré group as the symmetry group of canonical general relativity. Ann. Phys. 174(2), 463-498 (1987) · Zbl 0617.70021 · doi:10.1016/0003-4916(87)90037-6
[6] Cederbaum, C.: The Newtonian Limit of Geometrostatics. Ph.D. thesis, FU Berlin (2012). arXiv:1201.5433v1 · Zbl 1255.83021
[7] Cederbaum, C., Nerz, C.: Explicit Riemannian manifolds with unexpectedly behaving center of mass. Ann. Henri Poincaré 16 no. 7, 1609-1632 (2015), online first: http://tiny.cc/cttcox · Zbl 1319.83009
[8] Chen, P.-N., Wang, M.-T., Yau, S.-T.: Conserved quantities in general relativity: from the quasi-local level to spatial infinity. arXiv:1312.0985v1. · Zbl 1319.83011
[9] Chen, P.-N., Wang, M.-T., Yau, S.-T.: Quasilocal angular momentum and center of mass in general relativity (2013). arXiv:1312.0990v1 · Zbl 1278.83009
[10] Chen, P.-N., Wang, M.-T., and Yau, S.-T.: personal communication, (2014) · Zbl 1187.53027
[11] Christodoulou, D., Yau, S.-T.: Some remarks on the quasi-local mass. Mathematics and general relativity (Santa Cruz, CA, 1986), Contemp. Math., vol. 71, Amer. Math. Soc., Providence, RI, 1988, pp. 9-14. · Zbl 1056.53025
[12] Chruściel P.T.: On the invariant mass conjecture in general relativity. Commun. Math. Phys. 120, 233-248 (1988) · Zbl 0661.53060 · doi:10.1007/BF01217963
[13] Chruściel P.T., Herzlich M.: The mass of asymptotically hyperbolic Riemannian manifolds. Pac. J. Math. 212(2), 231-264 (2003) · Zbl 1056.53025 · doi:10.2140/pjm.2003.212.231
[14] Chruściel P.T., Maerten D., Tod P.: Rigid upper bounds for the angular momentum and centre of mass of non-singular asymptotically anti-de Sitter space-times. J High Energy Phys. 11, 084 (2006) · doi:10.1088/1126-6708/2006/11/084
[15] Chruściel P.T., Nagy G.: The mass of spacelike hypersurfaces in asymptotically anti-de Sitter space-times. Adv. Theor. Math. Phys. 5(4), 697-754 (2001) · Zbl 1033.53061 · doi:10.4310/ATMP.2001.v5.n4.a3
[16] Cortier J.: A family of asymptotically hyperbolic manifolds with arbitrary energy-momentum vectors. J. Math. Phys. 53(10), 102504 (2012) · Zbl 1278.83009 · doi:10.1063/1.4759581
[17] Cortier, J., Dahl, M., Gicquaud, R.: Mass-like invariants for asymptotically hyperbolic metrics. http://www.ihes.fr/ jcortier/Files/Other/AH-mass-aspect-partiel.pdf · Zbl 0094.23003
[18] Eichmair, M., Metzger, J.: Unique isoperimetric foliations of asymptotically flat manifolds in all dimensions. Invent. Math. 194(3), 591-630 (2013) · Zbl 1297.49078
[19] Herzlich, M.: Mass formulae for asymptotically hyperbolic manifolds. In: AdS/CFT correspondence: Einstein metrics and their conformal boundaries. 73rd meeting of the theoretical physicists and mathematicians, Strasbourg, France, September 11-13, 2003, pp. 103-121. European Mathematical Society (EMS), Zürich (2005) · Zbl 1082.53034
[20] Huang L.-H.: Foliations by Stable Spheres with Constant Mean Curvature for isolated systems with general asymptotics. Commun. Math. Phys. 300(2), 331-373 (2010) · Zbl 1206.53028 · doi:10.1007/s00220-010-1100-1
[21] Huisken G., Yau S.-T.: Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature. Invent. Math. 124(1-3), 281-311 (1996) · Zbl 0858.53071 · doi:10.1007/s002220050054
[22] Maerten D.: Positive energy-momentum theorem for AdS-asymptotically hyperbolic manifolds. Ann. Henri Poincaré 7(5), 975-1011 (2006) · Zbl 1255.83021 · doi:10.1007/s00023-006-0273-9
[23] Mazzeo R., Pacard F.: Constant curvature foliations in asymptotically hyperbolic spaces. Rev. Mat. Iberoam. 27(1), 303-333 (2011) (English) · Zbl 1214.53024 · doi:10.4171/RMI/637
[24] Michel B.: Geometric invariance of mass-like asymptotic invariants. J. Math. Phys. 52(5), 052504 (2011) · Zbl 1317.83030 · doi:10.1063/1.3579137
[25] Møller, C.: On the definition of the centre of gravity in an arbitrary closed system in the theory of relativity. Theor. Phys. vol. 3. Commun. Dublin Inst. Advanced Studies (1949) · Zbl 0032.32703
[26] Nerz, C.: Time evolution of ADM and CMC center of mass in general relativity (2013). arXiv:1312.6274v1 · Zbl 1065.53029
[27] Nerz, C.: Geometric characterizations of asymptotic flatness and linear momentum in general relativity (2014). arXiv:1409.6039v1 · Zbl 1329.53103
[28] Neves A., Tian G.: Existence and uniqueness of constant mean curvature foliation of asymptotically hyperbolic 3-manifolds. Geom. Funct. Anal. 19(3), 910-942 (2009) · Zbl 1187.53027 · doi:10.1007/s00039-009-0019-1
[29] Neves A., Tian G.: Existence and uniqueness of constant mean curvature foliation of asymptotically hyperbolic 3-manifolds. II. J. Reine Angew. Math. 641, 69-93 (2010) · Zbl 1194.53026
[30] Regge T., Teitelboim C.: Role of surface integrals in the hamiltonian formulation of general relativity. Ann. Phys. 88(1), 286-318 (1974) · Zbl 0328.70016 · doi:10.1016/0003-4916(74)90404-7
[31] Rigger R.: The foliation of asymptotically hyperbolic manifolds by surfaces of constant mean curvature (including the evolution equations and estimates). Manuscr. Math. 113(4), 403-421 (2004) · Zbl 1065.53029 · doi:10.1007/s00229-004-0439-z
[32] Szabados L.: On the Poincaré structure of asymptotically flat spacetimes. Class. Quantum Grav. 20, 2627-2661 (2003) · Zbl 1040.83010 · doi:10.1088/0264-9381/20/13/312
[33] Szabados, L.: The Poincaré Structure and the Centre-of-Mass of Asymptotically Flat Spacetimes. In: Analytical and Numerical Approaches to Mathematical Relativity. Lect. Notes Phys., vol. 692, pp. 157-184, Springer, 2006 · Zbl 1101.83010
[34] Wang X.: The mass of asymptotically hyperbolic manifolds. J. Differ. Geom. 57(2), 273-299 (2001) · Zbl 1037.53017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.