×

A finite volume scheme for diffusion equations on distorted quadrilateral meshes. (English) Zbl 1375.82100

Summary: A finite volume scheme is discussed for discretizing diffusion operators. Both cell-center unknowns and cell-vertex unknowns are used originally in the construction of the finite volume scheme. Then cell-vertex unknowns are eliminated by expressing them locally as linear combinations of cell-center unknowns, which is derived by the following process. First we construct a special control-volume for each cell-vertex and then design a finite volume scheme in this control-volume to obtain a linear relation between cell-vertex unknowns and cell-center unknowns. Hence cell-vertex unknown can be expressed by the combination of neighboring cell-center unknowns, and the resulting scheme has only cell-center unknowns like standard finite difference methods. Specially, the scheme can naturally treat problems with discontinuous coefficients. Its another advantage is that highly distorted meshes can be used without the numerical results being altered remarkably. We prove theoretically that the finite volume scheme is stable and has first-order accuracy on distorted meshes. Moreover, we have tested the scheme on a few elliptic and parabolic equations. Numerical results exhibit the good behavior of our scheme.

MSC:

82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
65N06 Finite difference methods for boundary value problems involving PDEs
76M12 Finite volume methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1023/A:1021291114475 · Zbl 1094.76550 · doi:10.1023/A:1021291114475
[2] DOI: 10.1002/fld.1096 · Zbl 1158.65331 · doi:10.1002/fld.1096
[3] DOI: 10.1137/S1064827595293582 · Zbl 0951.65080 · doi:10.1137/S1064827595293582
[4] DOI: 10.1137/S1064827595293594 · Zbl 0951.65082 · doi:10.1137/S1064827595293594
[5] DOI: 10.1016/j.jcp.2006.10.025 · Zbl 1120.65327 · doi:10.1016/j.jcp.2006.10.025
[6] DOI: 10.1006/jcph.2000.6466 · Zbl 0949.65101 · doi:10.1006/jcph.2000.6466
[7] Huang W., A study of cell-center finite volume methods for diffusion equations (1998)
[8] DOI: 10.1016/0021-9991(81)90158-3 · Zbl 0467.76080 · doi:10.1016/0021-9991(81)90158-3
[9] DOI: 10.1007/s10596-005-1815-9 · Zbl 1124.76030 · doi:10.1007/s10596-005-1815-9
[10] DOI: 10.1016/j.jcp.2005.05.028 · Zbl 1120.65332 · doi:10.1016/j.jcp.2005.05.028
[11] DOI: 10.1016/0021-9991(92)90402-K · Zbl 0763.76052 · doi:10.1016/0021-9991(92)90402-K
[12] DOI: 10.1006/jcph.1998.5981 · Zbl 1395.76052 · doi:10.1006/jcph.1998.5981
[13] Saad Y., Iterative method for sparse linear systems (1996) · Zbl 1031.65047
[14] DOI: 10.1006/jcph.1995.1085 · Zbl 0824.65101 · doi:10.1006/jcph.1995.1085
[15] Shashkov M., Conservarive finite-difference methods on general grids (1996)
[16] Sheng Z., J. Sci. Comput. 30 pp 1341– (2008)
[17] DOI: 10.1016/j.jcp.2006.11.011 · Zbl 1119.65084 · doi:10.1016/j.jcp.2006.11.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.