×

Nonparametric models and their estimation. (English) Zbl 1103.62034

Summary: Nonparametric models have become more and more popular over the last two decades. One reason for their popularity is software availability, which easily allows to fit smooth but otherwise unspecified functions to data. A benefit of the models is that the functional shape of a regression function is not prespecified in advance, but determined by the data. Clearly this allows for more insight which can be interpreted on a substance matter level. This paper gives an overview of available fitting routines, commonly called smoothing procedures. Moreover, a number of extensions to classical scatterplot smoothing are discussed, with examples supporting the advantages of the routines.

MSC:

62G08 Nonparametric regression and quantile regression
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Akaike, H. (1970). Statistical predictor identification. Annals of the Institute of Statistical Mathematics 22 203–217. · Zbl 0259.62076 · doi:10.1007/BF02506337
[2] Akritas, M., Politis, D. (2003). Recent Advances and Trends in Nonparametric Statistics. North Holland, Amsterdam. · Zbl 1186.62044
[3] Bowman, A. W., Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis: the Kernel Approach with S-Plus Illustrations. Oxford University Press, Oxford. · Zbl 0889.62027
[4] Chiarella, C., Flaschel, P. (2000). The Dynamics of Keynesian Monetary Growth: Macro Foundations. Cambridge University Press, Cambridge. · Zbl 0951.91039
[5] Cox, D. R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Association, Series B 34 187–220. · Zbl 0243.62041
[6] Crainiceanu, C., Ruppert, D., Claeskens, G., Wand, M. (2005). Exact likelihood ratio test for penalized splines. Biometrika 92 91–103. · Zbl 1068.62021 · doi:10.1093/biomet/92.1.91
[7] Dalgaard, P. (2002). Introductory Statistics with R. Springer, New York. · Zbl 1006.62001
[8] de Boor (1978). A Practical Guide to Splines. Springer, Berlin. · Zbl 0406.41003
[9] Efron, B. (2001). Selection criteria for scatterplot smoothers. The Annals of Statistics 29 470–504. · Zbl 1012.62040 · doi:10.1214/aos/1009210549
[10] Eilers, P., Marx, B. (1996). Flexible smoothing with B-splines and penalties. Statistical Science 11 89–121. · Zbl 0955.62562 · doi:10.1214/ss/1038425655
[11] Eubank, R. L. (1988) Spline Smoothing and Nonparametric Regression. Dekker, New York. · Zbl 0702.62036
[12] Fahrmeir, L., Tutz, G. (2001). Multivariate Statistical Modelling Based on Generalized Linear Models. 2nd ed., Springer, New York. · Zbl 0980.62052
[13] Fan, J., Gijbels, I. (1996). Local Polynomial Modelling and its Applications. Chapman and Hall, London. · Zbl 0873.62037
[14] Fan, J., Yao, O. (2003). Nonlinear Time Series: Nonparametric and Parametric Methods. Springer, New York. · Zbl 1014.62103
[15] Flaschel, P., Kauermann, G., Semmler, W. (2005). Testing wage and price Phillips curves for the United States. Metroeconomica (to appear). · Zbl 1143.91044
[16] Grambsch, P. M., Therneau, T. M. (2000). Modelling Survival Data: Extending the Cox Model. Springer, New York. · Zbl 0958.62094
[17] Green, D. J., Silverman, B. W. (1994). Nonparametric Regression and Generalized Linear Models. Chapman and Hall, London. · Zbl 0832.62032
[18] Gu, C., Wahba, G. (1991). Smoothing spline ANOVA with component-wise Bayesian confidence intervals. Journal of Computational and Graphical Statistics 2 97–117. · doi:10.2307/1390957
[19] Härdle, W., Hall, W., Marron, J. S. (1988). How far are automatically chosen regression smoothing parameter selectors from their optimum? Journal of the American Statistical Association 83 86–101. · Zbl 0644.62048 · doi:10.2307/2288922
[20] Härdle, W., Hall, W., Marron, J. S. (1992). Regression smoothing parameters that are not far from their optimum. Journal of the American Statistical Association 87 227–233. · Zbl 0850.62352 · doi:10.2307/2290473
[21] Härdle, W., Mammen, E. (1993). Comparing nonparametric versus parametric regression fits. The Annals of Statistics 21 1926–1947. · Zbl 0795.62036 · doi:10.1214/aos/1176349403
[22] Härdle, W., Lütkepohl, H., Chen, R. (1997). A review of nonparametric time series analysis. International Statistical Review 65 49–72. · Zbl 0887.62043 · doi:10.1111/j.1751-5823.1997.tb00367.x
[23] Härdle, W., Hlavka, Z., Klinke, S. (2000). XploRe, Application Guide. Springer, Berlin. · Zbl 0963.62001
[24] Härdle, W., Müller, M., Sperlich, S., Werwatz, A. (2004). Nonparametric and Semiparametric Models. Springer, Berlin. · Zbl 1059.62032
[25] Hastie, T. (1996). Pseudosplines. Journal of the Royal Statistical Society Series B 58 379–396. · Zbl 0853.62035
[26] Hastie, T., Tibshirani, R. (1990). Generalized Additive Models. Chapman and Hall, London. · Zbl 0747.62061
[27] Hastie, T., Tibshirani, R. (1993). Varying-coefficient models. Journal of the Royal Statistical Society, Series B 55 757–796. · Zbl 0796.62060
[28] Hurvich, C. M., Simonoff, J. S., Tsai, C. (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. Journal of the Royal Statistical Society, Series B 60 271–293. · Zbl 0909.62039 · doi:10.1111/1467-9868.00125
[29] Kauermann, G. (2000). Modelling longitudinal data with ordinal response by varying coefficients. Biometrics 56 692–698. · Zbl 1060.62513 · doi:10.1111/j.0006-341X.2000.00692.x
[30] Kauermann, G. (2004). A note on smoothing parameter selection for penalized spline smoothing. Journal of Statistical Planing and Inference 127 53–69. · Zbl 1083.62036 · doi:10.1016/j.jspi.2003.09.023
[31] Kauermann, G. (2005). Penalized spline fitting in multivariable survival models with varying coefficients. Computational Statistics and Data Analysis 49 169–186. · Zbl 1429.62141 · doi:10.1016/j.csda.2004.05.006
[32] Kauermann, G., Tutz, G. (2000). Local likelihood estimation in varying-coefficient models including additive bias correction. Journal of Nonparametric Statistics 12 343–371. · Zbl 0945.62044 · doi:10.1080/10485250008832812
[33] Kauermann, G., Tutz, G. (2001). Testing generalized linear and semiparametric models against smooth alternatives. Journal of the Royal Statistical Society, Series B 63 147–166. · Zbl 0980.62038 · doi:10.1111/1467-9868.00281
[34] Kauermann, G., Tutz, G., Brüderl, J. (2005). The survival of newly founded firms: A case study into varying-coefficient models. Journal of the Royal Statistical Society, Series A 168 145–158. · Zbl 1100.62102
[35] Loader, C. (1999). Local Regression and Likelihood. Springer, Berlin. · Zbl 0929.62046
[36] Marron, J. S., Chaudhuri, P. (1999). SiZer for exploration of structures in curves. Journal of the American Statistical Association 94 807–823. · Zbl 1072.62556 · doi:10.2307/2669996
[37] McCullagh, P., Nelder, J. A. (1989). Generalized Linear Models. 2nd ed., Chapman and Hall, New York. · Zbl 0744.62098
[38] Nadaraya, E. A. (1964). On estimating regression. Theory of Probability and Application 9 141–142. · Zbl 0136.40902 · doi:10.1137/1109020
[39] Nychka, D. (2000). Spatial process estimates as smoothers. In Smoothing and Regression. Approaches, Computation and Application (Schimek, ed.), Wiley, New York. · Zbl 1064.62568
[40] O’Sullivan, F. (1986). A statistical perspective on ill-posed inverse problems. Statistical Science 1 502–518. · Zbl 0955.65500 · doi:10.1214/ss/1177013525
[41] Opsomer, J. D., Wang, Y., Yang, Y. (2001). Nonparametric regression with correlated errors. Statistical Science 16 134–153. · Zbl 1059.62537 · doi:10.1214/ss/1009213287
[42] Pagan, R., Ullah, A. (1999). Nonparametric Econometrics. Cambridge University Press, Cambridge.
[43] Phillips, A. W. (1958). The relation between unemployment and the rate of change of money wage rates in the United Kingdom, 1861–1957. Economica 25 283–299.
[44] Reinsch, C. H. (1967). Smoothing by spline functions. Numerical Mathematics 10 177–183. · Zbl 0161.36203 · doi:10.1007/BF02162161
[45] Rice, J. A. (1984). Bandwidth choice for nonparametric regression. Annals of Statistics 12 1215–1230. · Zbl 0554.62035 · doi:10.1214/aos/1176346788
[46] Ripley, B. D., Venables, W. N. (2002). Modern Applied Statistics with S. 4th ed., Springer, New York. · Zbl 1006.62003
[47] Ruppert, D. (2004). Statistics and Finance. Springer, New York. · Zbl 1049.91083
[48] Ruppert, R., Wand, M. P., Carroll, R. J. (2003). Semiparametric Regression. Cambridge University Press, Cambridge. · Zbl 1038.62042
[49] Simonoff, J. S. (1996). Smoothing Methods in Statistics. Springer, New York. · Zbl 0859.62035
[50] Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, Series B 36 111–147. · Zbl 0308.62063
[51] Wand, M. P. (2003). Smoothing and mixed models. Computational Statistics 18 223–249. · Zbl 1050.62049
[52] Wahba, G. (1990). Regularization and cross validation methods for nonlinear implicit, ill-posed inverse problems. In Geophysical Data Inversion Methods and Applications (A. Vogel, C. Ofoegbu, R. Gorenflo and B. Ursin, eds.), 3–13. Wieweg, Wiesbaden-Braunschweig.
[53] Watson, G. S. (1964). Smooth regression analysis. Sankhyā, Series A 26 359–372. · Zbl 0137.13002
[54] Wood, S. N. (2003). Thin plate regression splines. Journal of the Royal Statistical Society, Series B 65 95–114. · Zbl 1063.62059 · doi:10.1111/1467-9868.00374
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.