×

Approximate diagonalization of some Toeplitz operators and matrices. (English) Zbl 1523.47042

Two particular self-adjoint Toeplitz operators are considered. The first is \(T=T(\rho)\) with entries \(t_{ij}=\rho^{|i-j|}\), \(\rho\in(0,1)\). Here, the theory of M. Rosenblum and J. Rovnyak [Hardy classes and operator theory. Unabr. and slightly corr. republ. of the 1985 orig. Mineola, NY: Dover (1997; Zbl 0918.47001)] can be applied to give an explicit characterization for the unitary isometry \(V\) such that \(VTV^{-1}=M_x\), where \(M_x\) is the multiplication operator with \(x\) in the spectrum. The second Toeplitz operator has only three nonzero diagonals: \(a_0\in\mathbb{R}\) on the main diagonal and for some fixed \(k\ge2\), \(a_k\in\mathbb{R}\) on the diagonals \(\pm k\). Here, the generic \(T(\cos k\theta)\) for which \(a_0=0\) and \(a_k=1/2\) needs to be analysed. Using Chebyshev polynomials of the second kind, ‘generalized eigenvectors’ \(v_\lambda\) are obtained satisfying \(T(\cos k\theta) v_\lambda = \lambda v_\lambda\), for \(\lambda\) in the spectrum. There are \(k\) generalized eigenvectors for each point in the spectrum.
The eigenvectors of the \(n\times n\) leading Toeplitz matrices are shown to be approximations for the eigenfunctions of the operator with an error depending on \(n\) and on \(\rho\) or \(k\), respectively.
Explicit expressions in the tridiagonal Toeplitz case were also obtained in [S. E. Ekström and S. Serra-Capizzano, Numer. Linear Algebra Appl. 25, No. 5, e2137, 17 p. (2018; Zbl 1513.65095)].

MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
62M15 Inference from stochastic processes and spectral analysis
Full Text: DOI

References:

[1] Böttcher, A.; Silbermann, B., Analysis of Toeplitz operators (2006), Berlin: Springer-Verlag, Berlin · Zbl 1098.47002
[2] Grenander, U.; Szegö, G., Toeplitz forms and their applications (1984), New York (NY): Chelsea Publishing Co.,, New York (NY) · Zbl 0611.47018
[3] Böttcher, A.; Grudsky, SM., Spectral properties of banded Toeplitz matrices (2005), Philadelphia (PA): Society for Industrial and Applied Mathematics (SIAM), Philadelphia (PA) · Zbl 1089.47001
[4] Rosenblum, M., A concrete spectral theory for self-adjoint Toeplitz operators, Amer J Math, 87, 709-718 (1965) · Zbl 0135.16701
[5] Rosenblum, M.; Rovnyak, J., Hardy classes and operator theory (1997), Mineola (NY): Dover Publications, Inc., Mineola (NY) · Zbl 0918.47001
[6] Baek, EK; Ferron, JM., Multilevel models for multiple-baseline data: modeling across-participant variation in autocorrelation and residual variance, Behav Res Methods, 45, 1, 65-74 (2013)
[7] Xiao, H.; Wu, WB., Covariance matrix estimation for stationary time series, Ann Statist, 40, 1, 466-493 (2012) · Zbl 1246.62191
[8] Gelfand, IM; Vilenkin, NY., Generalized functions (1964), New York - London: Academic Press, New York - London · Zbl 0136.11201
[9] Nobari, E.; Ahmadi Kakavandi, B., A geometric mean for Toeplitz and Toeplitz-block block-Toeplitz matrices, Linear Algebra Appl, 548, 189-202 (2018) · Zbl 06865817
[10] Nobari, E., A monotone geometric mean for a class of Toeplitz matrices, Linear Algebra Appl, 511, 1-18 (2016) · Zbl 1354.15020
[11] Trench, WF., An elementary view of Weyl’s theory of equal distribution, Amer Math Monthly, 119, 10, 852-861 (2012) · Zbl 1275.11105
[12] Nielsen, OA., Direct integral theory (1980), New York (NY): Marcel Dekker, Inc., New York (NY) · Zbl 0482.46037
[13] Ismagilov, RS., On the spectrum of Toeplitz matrices, (Russian) Dokl Akad Nauk SSSR, 149, 769-772 (1963) · Zbl 0204.15903
[14] Ekström, SE; Serra-Capizzano, S., Eigenvalues and eigenvectors of banded Toeplitz matrices and the related symbols, Numer Linear Algebra Appl, 25, 5, e2137 (2018) · Zbl 1513.65095
[15] De la Madrid, R., The role of the rigged Hilbert space in quantum mechanics, Eur J Phys, 26, 287 (2005) · Zbl 1079.81022
[16] Dunford, N, Schwartz, JT. Linear operators. Vol. I, general theory, with the assistance of W. G. Bade and R. G. Bartle. Pure and applied mathematics; Vol. 7 Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London (1958). · Zbl 0084.10402
[17] Noschese, S.; Pasquini, L.; Reichel, L., Tridiagonal Toeplitz matrices: properties and novel applications, Numerical Linear Algebra Appl, 20, 2, 302-326 (2013) · Zbl 1289.65082
[18] Shalev-Shwartz, S.; Ben-David, S., Understanding machine learning: from theory to algorithms (2014), New York (NY): Cambridge University Press, New York (NY) · Zbl 1305.68005
[19] Zaki, MJ; Meira, W., Data mining and analysis: fundamental concepts and algorithms (2014), New York (NY): Cambridge University Press, New York (NY) · Zbl 1331.68005
[20] Matache, MT, Matache, V. Hilbert spaces induced by Toeplitz covariance kernels. Stochastic theory and control (Lawrence, KS, 2001), 319-333; Berlin: Springer; 2002. (Lect. Notes Control Inf. Sci.; 280). · Zbl 1046.46024
[21] Hauberg, S.; Feragen, A.; Enficiaud, R., Scalable robust principal component analysis using grassmann averages, IEEE Trans Pattern Anal Mach Intell, 38, 11, 2298-2311 (2016)
[22] Papamakarios, G, Panagakis, Y, Zafeiriou, S. Generalised scalable robust principal component analysis. Proceedings of the British Machine Vision Conference. BMVA Press, Sep. 2014.
[23] Peng, C, Chen, C, Kang, C, et al. RES-PCA: a scalable approach to recovering low-rank matrices. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2019.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.