×

Numerical study of a fast two-level Strang splitting method for spatial fractional Allen-Cahn equations. (English) Zbl 07698931

Summary: In this paper, a numerical method to solve the multi-dimensional spatial fractional Allen-Cahn equations has been investigated. After semi-discretizating the equations, a system of nonlinear ordinary differential equations with a Toeplitz structure is induced. We propose to split the Toeplitz matrix into the sum of a circulant matrix and a skew-circulant matrix, and apply the Strang splitting method. Such a two-level Strang splitting method will reduce the computational complexity to \({\mathcal{O}}(q\log q)\). Moreover, it preserves not only the discrete maximum principle unconditionally but also second-order convergence as well. By introducing a new modified energy formula, the energy dissipation property can be guaranteed. Finally, some numerical experiments are conducted to confirm the theories we put forward.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Rxx Miscellaneous topics in partial differential equations

Software:

mftoolbox
Full Text: DOI

References:

[1] Allen, SM; Cahn, JW, Ground state structures in ordered binary alloys with second neighbor interactions, Acta Metall., 20, 423-433 (1972) · doi:10.1016/0001-6160(72)90037-5
[2] Barakitis, N.; Ekström, SE; Vassalos, P., Preconditioners for fractional diffusion equations based on the spectral symbol, Numer. Linear Algebra Appl., 29 (2022) · Zbl 07584149 · doi:10.1002/nla.2441
[3] Cai, Y.; Fang, Z.; Sun, H.; Chen, H., A fast two-level Strang splitting method for multi-dimensional spatial fractional Allen-Cahn equations with discrete maximum principle, East Asian J. Appl. Math. (2023) · Zbl 1514.65159 · doi:10.4208/eajam.2022-248.161022
[4] Chan, R.; Ng, M., Toeplitz preconditioners for Hermitian Toeplitz systems, Linear Algebra Appl., 190, 181-208 (1993) · Zbl 0783.65042 · doi:10.1016/0024-3795(93)90226-E
[5] Chan, R.; Ng, M., Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38, 427-482 (1996) · Zbl 0863.65013 · doi:10.1137/S0036144594276474
[6] Chen, H.; Sun, H., A dimensional splitting exponential time differencing scheme for multidimensional fractional Allen-Cahn equations, J. Sci. Comput., 87, 1-25 (2021) · Zbl 1466.65099 · doi:10.1007/s10915-021-01431-0
[7] Chen, H.; Sun, H., Second-order maximum principle preserving Strang’s splitting schemes for anisotropic fractional Allen-Cahn equations, Numer. Algorithms, 90, 749-771 (2021) · Zbl 07525419 · doi:10.1007/s11075-021-01207-5
[8] Di Benedetto, F., Analysis of preconditioning techniques for ill-conditioned Toeplitz matrices, SIAM J. Sci. Comput., 16, 682-697 (1995) · Zbl 0830.65032 · doi:10.1137/0916041
[9] Donatelli, M.; Mazza, M.; Serra-Capizzano, S., Spectral analysis and structure preserving preconditioners for fractional diffusion equations, J. Comput. Phys., 307, 262-279 (2016) · Zbl 1352.65305 · doi:10.1016/j.jcp.2015.11.061
[10] Donatelli, M.; Mazza, M.; Serra-Capizzano, S., Spectral analysis and multigrid methods for finite volume approximations of space-fractional diffusion equations, SIAM J. Sci. Comput., 40, A4007-A4039 (2018) · Zbl 1405.65161 · doi:10.1137/17M115164X
[11] Du, Q.; Ju, L.; Li, X.; Qiao, ZH, Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation, SIAM J. Numer. Anal., 57, 875-898 (2019) · Zbl 1419.65018 · doi:10.1137/18M118236X
[12] Einkemmer, L.; Ostermann, A., Convergence analysis of Strang splitting for Vlasov-type equations, SIAM J. Numer. Anal., 52, 140-155 (2014) · Zbl 1297.65106 · doi:10.1137/130918599
[13] Evan, LC; Soner, HM; Souganidis, PE, Phase transitions and generalized motion by mean curvature, Commun. Pure Appl. Math., 45, 1097-1123 (1992) · Zbl 0801.35045 · doi:10.1002/cpa.3160450903
[14] Fiorentino, G.; Serra Capizzano, S., Multigrid methods for Toeplitz matrices, Calcolo, 28, 283-305 (1991) · Zbl 0778.65021 · doi:10.1007/BF02575816
[15] Gohberg, I.; Olshevsky, V., Circulants, displacements and decompositions of matrices, Integr. Equ. Oper. Theory, 15, 730-743 (1992) · Zbl 0772.15010 · doi:10.1007/BF01200697
[16] Gronwall, TH, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Ann. Math., 20, 292-296 (1919) · JFM 47.0399.02 · doi:10.2307/1967124
[17] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations (2006), Berlin: Springer, Berlin · Zbl 1094.65125
[18] Hansen, E.; Kramer, F.; Ostermann, A., A second-order positivity preserving scheme for semilinear parabolic problems, Appl. Numer. Math., 62, 1428-1435 (2012) · Zbl 1267.65082 · doi:10.1016/j.apnum.2012.06.003
[19] Higham, NJ, Functions of Matrices: Theory and Computation (2008), SIAM · Zbl 1167.15001 · doi:10.1137/1.9780898717778
[20] Horn, RA; Johnson, CR, Matrix Analysis (2012), Cambridge University Press · doi:10.1017/CBO9781139020411
[21] Hou, T.; Tang, T.; Yang, J., Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations, J. Sci. Comput., 72, 1214-1231 (2017) · Zbl 1379.65063 · doi:10.1007/s10915-017-0396-9
[22] Huang, X.; Li, D.; Sun, H.; Zhang, F., Preconditioners with symmetrized techniques for space fractional Cahn-Hilliard equations, J. Sci. Comput., 92, 41, 25 (2022) · Zbl 1492.65238
[23] Lee, S.; Liu, X.; Sun, H., Fast exponential time integration scheme for option pricing with jumps, Numer. Linear Algebr. Appl., 19, 87-101 (2012) · Zbl 1274.91481 · doi:10.1002/nla.749
[24] Lee, S.; Pang, H.; Sun, H., Shift-invert Arnoldi approximation to the Toeplitz matrix exponential, SIAM J. Sci. Comput., 32, 774-792 (2010) · Zbl 1210.65079 · doi:10.1137/090758064
[25] Li, D.; Quan, C.; Xu, J., Stability and convergence of Strang splitting. Part I: scalar Allen-Cahn equation, J. Comput. Phys., 458 (2022) · Zbl 07527714 · doi:10.1016/j.jcp.2022.111087
[26] Massei, S.; Mazza, M.; Robol, L., Fast solvers for two-dimensional fractional diffusion equations using rank structured matrices, SIAM J. Sci. Comput., 41, A2627-A2656 (2019) · Zbl 1420.65096 · doi:10.1137/18M1180803
[27] Moret, I.; Novati, P., RD-rational approximations of the matrix exponential, BIT, 44, 595-615 (2004) · Zbl 1075.65062 · doi:10.1023/B:BITN.0000046805.27551.3b
[28] Ng, M., Circulant and skew-circulant splitting methods for Toeplitz systems, J. Comput. Appl. Math., 159, 101-108 (2003) · Zbl 1033.65014 · doi:10.1016/S0377-0427(03)00562-4
[29] Pang, H.; Sun, H., Shift-invert Lanczos method for the symmetric positive semidefinite Toeplitz matrix exponential, Numer. Linear Algebra Appl., 18, 603-614 (2011) · Zbl 1249.65104 · doi:10.1002/nla.747
[30] Pang, H.; Sun, H., Multigrid method for fractional diffusion equations, J. Comput. Phys., 231, 693-703 (2012) · Zbl 1243.65117 · doi:10.1016/j.jcp.2011.10.005
[31] Pang, H.; Sun, H., Fast exponential time integration for pricing options in stochastic volatility jump diffusion models, East Asian J. Appl. Math., 4, 52-68 (2014) · Zbl 1292.91186 · doi:10.4208/eajam.280313.061013a
[32] Podlubny, I., Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (1998), Elsevier · Zbl 0924.34008
[33] Powers, DL, Problem 74.5: on the norm of a matrix exponential, SIAM Rev., 17, 174-176 (1975) · doi:10.1137/1017019
[34] Serra Capizzano, S., Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems, BIT, 34, 579-594 (1994) · Zbl 0823.65030 · doi:10.1007/BF01934269
[35] Serra Capizzano, S., Superlinear PCG methods for symmetric Toeplitz systems, Math. Comput., 68, 793-803 (1999) · Zbl 1043.65066 · doi:10.1090/S0025-5718-99-01045-5
[36] Serra Capizzano, S., Toeplitz preconditioners constructed from linear approximation processes, SIAM J. Matrix Anal. Appl., 20, 446-465 (1999) · Zbl 0919.65031 · doi:10.1137/S0895479897316904
[37] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 506-517 (1968) · Zbl 0184.38503 · doi:10.1137/0705041
[38] Tian, W.; Zhou, H.; Deng, W., A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput., 84, 1703-1727 (2015) · Zbl 1318.65058 · doi:10.1090/S0025-5718-2015-02917-2
[39] Zhang, L.; Zhang, Q.; Sun, H., Exponential Runge-Kutta method for two-dimensional nonlinear fractional complex Ginzburg-Landau equations, J. Sci. Comput., 83, 1-24 (2020) · Zbl 1442.65340 · doi:10.1007/s10915-020-01240-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.