Montardini, M.; Sangalli, G.; Tani, M. A low-rank isogeometric solver based on Tucker tensors. (English) Zbl 1536.65150 Comput. Methods Appl. Mech. Eng. 417, Part B, Article ID 116472, 25 p. (2023). Summary: We propose an isogeometric solver for Poisson problems that combines (i) low-rank tensor techniques to approximate the unknown solution and the system matrix, as a sum of a few terms having Kronecker product structure, (ii) a Truncated Preconditioned Conjugate Gradient solver to keep the rank of the iterates low, and (iii) a novel low-rank preconditioner, based on the Fast Diagonalization method where the eigenvector multiplication is approximated by the Fast Fourier Transform. Although the proposed strategy is written in arbitrary dimension, we focus on the three-dimensional case and adopt the Tucker format for low-rank tensor representation, which is well suited in low dimension. We show by numerical tests that this choice guarantees significant memory saving compared to the full tensor representation. We also extend and test the proposed strategy to linear elasticity problems. MSC: 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 65D07 Numerical computation using splines 65F55 Numerical methods for low-rank matrix approximation; matrix compression 15A69 Multilinear algebra, tensor calculus Keywords:isogeometric analysis; preconditioning; truncated preconditioned conjugate gradient method; Tucker representation; low-rank decomposition Software:Tensorlab; TensorToolbox.jl; Chebfun; GeoPDEs × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Engrg., 39-41, 4135-4195 (2005) · Zbl 1151.74419 [2] Beirão da Veiga, L.; Buffa, A.; Sangalli, G.; Vázquez, R., Mathematical analysis of variational isogeometric methods. Acta Numer., 157-287 (2014) · Zbl 1398.65287 [3] Cottrell, J. A.; Hughes, T. J.R.; Reali, A., Studies of refinement and continuity in isogeometric structural analysis. Comput. Methods Appl. Mech. Engrg., 41, 4160-4183 (2007) · Zbl 1173.74407 [4] Sande, E.; Manni, C.; Speleers, H., Explicit error estimates for spline approximation of arbitrary smoothness in isogeometric analysis. Numer. Math., 4, 889-929 (2020) · Zbl 1483.65026 [5] Hughes, T. J.R.; Sangalli, G.; Tani, M., Isogeometric analysis: Mathematical and implementational aspects, with applications, 237-315 · Zbl 1410.65451 [6] Mantzaflaris, A.; Jüttler, B.; Khoromskij, B. N.; Langer, U., Low rank tensor methods in Galerkin-based isogeometric analysis. Comput. Methods Appl. Mech. Engrg., 1062-1085 (2017) · Zbl 1439.65185 [7] Hofreither, C., A black-box low-rank approximation algorithm for fast matrix assembly in isogeometric analysis. Comput. Methods Appl. Mech. Engrg., 311-330 (2018) · Zbl 1440.65210 [8] Jüttler, B.; Mokriš, D., Low rank interpolation of boundary spline curves. Comput. Aided Geom. Design, 48-68 (2017) · Zbl 1375.65014 [9] Pan, M.; Chen, F., Low-rank parameterization of volumetric domains for isogeometric analysis. Comput. Aided Des., 82-90 (2019) [10] Georgieva, I.; Hofreither, C., Greedy low-rank approximation in tucker format of solutions of tensor linear systems. J. Comput. Appl. Math., 206-220 (2019) · Zbl 1415.65099 [11] Bünger, A.; Dolgov, S.; Stoll, M., A low-rank tensor method for PDE-constrained optimization with isogeometric analysis. SIAM J. Sci. Comput., 1, A140-A161 (2020) · Zbl 1429.65061 [12] Driscoll, T. A.; Hale, N.; Trefethen, L. N., Chebfun Guide (2014), Pafnuty Publications [13] Dolgov, S.; Kressner, D.; Strossner, C., Functional Tucker approximation using Chebyshev interpolation. SIAM J. Sci. Comput., 3, A2190-A2210 (2021) · Zbl 1510.65033 [14] Kressner, D.; Tobler, C., Low-rank tensor krylov subspace methods for parametrized linear systems. SIAM J. Matrix Anal. Appl., 4, 1288-1316 (2011) · Zbl 1237.65034 [15] Simoncini, V.; Hao, Y., Analysis of the truncated conjugate gradient method for linear matrix equations (2022), hal-03579267 [16] Lynch, R. E.; Rice, J. R.; Thomas, D. H., Direct solution of partial difference equations by tensor product methods. Numer. Math., 1, 185-199 (1964) · Zbl 0126.12703 [17] Sangalli, G.; Tani, M., Isogeometric preconditioners based on fast solvers for the sylvester equation. SIAM J. Sci. Comput., 6, A3644-A3671 (2016) · Zbl 1353.65035 [18] Braess, D.; Hackbusch, W., Approximation of \(1 / x\) by exponential sums in \([ 1 , \infty )\). IMA J. Numer. Anal., 4, 685-697 (2005) · Zbl 1082.65025 [19] Hackbusch, W., Computation of best \(L^\infty\) exponential sums for \(1 / x\) by Remez’algorithm. Comput. Vis. Sci., 1, 1-11 (2019) · Zbl 07704875 [20] Kressner, D.; Perisa, L., Recompression of hadamard products of tensors in tucker format. SIAM J. Sci. Comput., 5, A1879-A1902 (2017) · Zbl 1373.65031 [21] Beirão da Veiga, L.; Pavarino, L. F.; Scacchi, S.; Widlund, O. B.; Zampini, S., Adaptive selection of primal constraints for isogeometric bddc deluxe preconditioners. SIAM J. Sci. Comput., 1, A281-A302 (2017) · Zbl 1360.65090 [22] Donatelli, M.; Garoni, C.; Manni, C.; Serra-Capizzano, S.; Speleers, H., Robust and optimal multi-iterative techniques for IgA Galerkin linear systems. Comput. Methods Appl. Mech. Engrg., 230-264 (2015) · Zbl 1425.65136 [23] Garcia, D.; Pardo, D.; Dalcin, L.; Calo, V. M., Refined isogeometric analysis for a preconditioned conjugate gradient solver. Comput. Methods Appl. Mech. Engrg., 490-509 (2018) · Zbl 1440.65162 [24] Hofreither, C.; Takacs, S., Robust multigrid for isogeometric analysis based on stable splittings of spline spaces. SIAM J. Numer. Anal., 4, 2004-2024 (2017) · Zbl 1371.65130 [25] Tielen, R.; Möller, M.; Göddeke, D.; Vuik, C., \(p\)-multigrid methods and their comparison to \(h\)-multigrid methods within Isogeometric Analysis. Comput. Methods Appl. Mech. Engrg. (2020) · Zbl 1506.65243 [26] De Boor, C., A practical guide to splines (revised edition) · Zbl 0987.65015 [27] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009 [28] Kolda, T. G.; Bader, B. W., Tensor decompositions and applications. SIAM Rev., 3, 455-500 (2009) · Zbl 1173.65029 [29] Oseledets, I. V.; Savostyanov, D. V.; Tyrtyshnikov, E. E., Linear algebra for tensor problems. Computing, 3, 169-188 (2009) · Zbl 1172.65018 [30] Tucker, L. R., Some mathematical notes on three-mode factor analysis. Psychometrika, 3, 279-311 (1966) [31] De Lathauwer, L.; De Moor, B.; Vandewalle, J., A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl., 4, 1253-1278 (2000) · Zbl 0962.15005 [32] Vannieuwenhoven, N.; Vandebril, R.; Meerbergen, K., A new truncation strategy for the higher-order singular value decomposition. SIAM J. Sci. Comput., 2, A1027-A1052 (2012) · Zbl 1247.65055 [33] Grasedyck, L.; Kressner, D.; Tobler, C., A literature survey of low-rank tensor approximation techniques. GAMM-Mitt., 1, 53-78 (2013) · Zbl 1279.65045 [34] Zander, E. K., Tensor approximation methods for stochastic problems (2013), Braunschweig, Institut für Wissenschaftliches Rechnen, (Ph.D. thesis) · Zbl 1300.60014 [35] Matthies, H. G.; Zander, E., Solving stochastic systems with low-rank tensor compression. Linear Algebra Appl., 10, 3819-3838 (2012) · Zbl 1241.65016 [36] Kressner, D.; Tobler, C., Krylov subspace methods for linear systems with tensor product structure. SIAM J. Matrix Anal. Appl., 4, 1688-1714 (2010) · Zbl 1208.65044 [37] Palitta, D.; Kürschner, P., On the convergence of Krylov methods with low-rank truncations. Numer. Algorithms, 3, 1383-1417 (2021) · Zbl 1482.65067 [38] Simoncini, V.; Szyld, D. B., Theory of inexact Krylov subspace methods and applications to scientific computing. SIAM J. Sci. Comput., 2, 454-477 (2003) · Zbl 1048.65032 [39] Vázquez, R., A new design for the implementation of isogeometric analysis in octave and matlab: GeoPDEs 3.0. Comput. Math. Appl., 3, 523-554 (2016) · Zbl 1359.65270 [40] Vervliet, N.; Debals, O.; Sorber, L.; Van Barel, M.; De Lathauwer, L., Tensorlab v3.0 (2016), URL: https://www.tensorlab.net [41] Bosy, M.; Montardini, M.; Sangalli, G.; Tani, M., A domain decomposition method for isogeometric multi-patch problems with inexact local solvers. Comput. Math. Appl., 11, 2604-2621 (2020) · Zbl 1524.65761 [42] Loli, G.; Sangalli, G.; Tani, M., Easy and efficient preconditioning of the isogeometric mass matrix. Comput. Math. Appl., 245-264 (2022) · Zbl 1524.65841 [43] Niederreiter, H., Random Number Generation and Quasi-Monte Carlo Methods (1992), SIAM · Zbl 0761.65002 [44] Ekström, S.; Furci, I.; Garoni, C.; Manni, C.; Serra-Capizzano, S.; Speleers, H., Are the eigenvalues of the B-spline isogeometric analysis approximation of- \( \Delta u= \lambda\) u known in almost closed form?. Numer. Linear Algebra Appl., 5 (2018) · Zbl 1513.65454 [45] Van Loan, C., Computational Frameworks for the Fast Fourier Transform (1992), SIAM · Zbl 0757.65154 [46] Deng, Q.; Calo, V. M., A boundary penalization technique to remove outliers from isogeometric analysis on tensor-product meshes. Comput. Methods Appl. Mech. Engrg. (2021) · Zbl 1506.65169 [47] Hiemstra, R. R.; Hughes, T. J.R.; Reali, A.; Schillinger, D., Removal of spurious outlier frequencies and modes from isogeometric discretizations of second-and fourth-order problems in one, two, and three dimensions. Comput. Methods Appl. Mech. Engrg. (2021) · Zbl 1507.65130 [48] Manni, C.; Sande, E.; Speleers, H., Application of optimal spline subspaces for the removal of spurious outliers in isogeometric discretizations. Comput. Methods Appl. Mech. Engrg. (2022) · Zbl 1507.65228 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.