×

Exact equivalences and phase discrepancies between random matrix ensembles. (English) Zbl 1459.60014

Summary: We study two types of random matrix ensembles that emerge when considering the same probability measure on partitions. One is the Meixner ensemble with a hard wall and the other are two families of unitary matrix models, with weight functions that can be interpreted as characteristic polynomial insertions. We show that the models, while having the same exact evaluation for fixed values of the parameter, may present a different phase structure. We find phase transitions of the second and third order, depending on the model. Other relationships, via direct mapping, between the unitary matrix models and continuous random matrix ensembles on the real line, of Cauchy-Romanovski type, are presented and studied both exactly and asymptotically. The case of orthogonal and symplectic groups is studied as well and related to Wronskians of Chebyshev polynomials, that we evaluate at large \(N\).

MSC:

60B20 Random matrices (probabilistic aspects)
15B52 Random matrices (algebraic aspects)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
82C23 Exactly solvable dynamic models in time-dependent statistical mechanics

References:

[1] Mehta M L 2004 Random Matrices, Pure and Applied Mathematics (New York: Elsevier) · Zbl 1107.15019
[2] Forrester P J 2010 Log-Gases and Random Matrices(London Mathematical Society Monographs Series) vol 34 (Princeton, NJ: Princeton University Press) · Zbl 1217.82003 · doi:10.1515/9781400835416
[3] Blower G 2009 Random Matrices: High Dimensional Phenomena(London Mathematical Society Lecture Note Series) (Cambridge: Cambridge University Press) · Zbl 1278.60003 · doi:10.1017/CBO9781139107129
[4] Anderson G W, Guionnet A and Zeitouni O 2009 An Introduction to Random Matrices(Cambridge Studies in Advanced Mathematics) (Cambridge: Cambridge University Press) · Zbl 1184.15023 · doi:10.1017/CBO9780511801334
[5] Akemann G, Baik J and Di Francesco P 2011 The Oxford Handbook of Random Matrix Theory, Oxford Handbooks in Mathematics (Oxford: Oxford University Press) · Zbl 1225.15004
[6] Pastur L and Shcherbina M 2011 Eigenvalue Distribution of Large Random Matrices(Mathematical Surveys and Monographs) vol 171 (Providence, RI: American Mathematical Society) · Zbl 1244.15002 · doi:10.1090/surv/171
[7] Tao T 2012 Topics in Random Matrix Theory(Graduate Studies in Mathematics) vol 132 (Providence, RI: American Mathematical Society) · Zbl 1256.15020
[8] Baik J, Deift P and Suidan T 2016 Combinatorics and Random Matrix Theory(Graduate Studies in Mathematics) vol 172 (Providence, RI: American Mathematical Society) · Zbl 1342.05001 · doi:10.1090/gsm/172
[9] Colomo F and Pronko A G 2013 Third-order phase transition in random tilings Phys. Rev. E 88 042125 · doi:10.1103/physreve.88.042125
[10] Colomo F and Pronko A G 2015 Thermodynamics of the six-vertex model in an L-shaped domain Commun. Math. Phys.339 699 · Zbl 1329.82036 · doi:10.1007/s00220-015-2406-9
[11] Macdonald I G 1998 Symmetric Functions and Hall Polynomials(Oxford Classic Texts in the Physical Sciences) (Oxford: Clarendon) · Zbl 0899.05068
[12] Okounkov A 2001 Infinite wedge and random partitions Selecta Math.7 57 · Zbl 0986.05102 · doi:10.1007/pl00001398
[13] Okounkov A 2005 The uses of random partitions XIVth International Congress on Mathematical Physics (Singapore: World Scientific) 379-pp 403 · Zbl 1120.05301
[14] Borodin A and Olshanski G 2000 Distributions on partitions, point processes, and the hypergeometric kernel Commun. Math. Phys.211 335 · Zbl 0966.60049 · doi:10.1007/s002200050815
[15] Okounkov A 2001 SL(2) and z-measures Random Matrix Models and Their Applications(Mathematical Sciences Research Institute Publications vol 40) (Cambridge: Cambridge University Press) pp 407-20 · Zbl 0985.43007
[16] Borodin A and Olshanski G 2001 z-measures on partitions, Robinson-Schensted-Knuth correspondence, and β = 2 random matrix ensembles Random Matrix Models and Their Applications(Mathematical Sciences Research Institute Publications vol 40) (Cambridge: Cambridge University Press) pp 71-94 · Zbl 0987.15013
[17] Barnes E 1899 The theory of the g-function Quart. J. Math.31 264 · JFM 30.0389.02
[18] Stéphan J-M 2020 Extreme boundary conditions and random tilings (arXiv:2003.06339)
[19] Johansson K 2010 A multi-dimensional markov chain and the meixner ensemble Ark. Mat.48 79 · Zbl 1197.60072 · doi:10.1007/s11512-008-0089-6
[20] Hikami K and Imamura T 2003 Vicious walkers and hook Young tableaux J. Phys. A: Math. Gen.36 3033 · Zbl 1046.82010 · doi:10.1088/0305-4470/36/12/311
[21] García-García D and Tierz M 2020 Toeplitz minors and specializations of skew Schur polynomials J. Combin. Theory172 105201 · Zbl 1434.15017 · doi:10.1016/j.jcta.2019.105201
[22] Andréief C 1886 Note sur une relation entre les intégrales définies des produits des fonctions Mém . Soc. Sci. Phys. Nat. Bordeaux2 1 · JFM 18.0262.03
[23] Forrester P J 2019 Meet Andréief, Bordeaux 1886, and Andreev, Kharkov 1882-1883 Random Matrices: Theory and Applications08 1930001 · Zbl 1421.15003 · doi:10.1142/s2010326319300018
[24] Johansson K 2000 Shape fluctuations and random matrices Commun. Math. Phys.209 437 · Zbl 0969.15008 · doi:10.1007/s002200050027
[25] Böttcher A and Silbermann B 1985 Toeplitz matrices and determinants with Fisher-Hartwig symbols J. Funct. Anal.63 178 · Zbl 0592.47016 · doi:10.1016/0022-1236(85)90085-0
[26] Böttcher A and Widom H 2005 Two elementary derivations of the pure Fisher-Hartwig determinant Integral Equations Operator Theory53 593 · Zbl 1081.47033 · doi:10.1007/s00020-005-1380-6
[27] Böttcher A and Grudsky S M 2005 Spectral Properties of Banded Toeplitz Matrices vol 96 (Philadelphia, PA: SIAM) · Zbl 1089.47001 · doi:10.1137/1.9780898717853
[28] Baik J 2000 Random vicious walks and random matrices Commun. Pure Appl. Math.53 1385 · Zbl 1026.60071 · doi:10.1002/1097-0312(200011)53:11<1385::aid-cpa3>3.0.co;2-t
[29] Baik J, Deift P and Johansson K 1999 On the distribution of the length of the longest increasing subsequence of random permutations J. Amer. Math. Soc.12 1119 · Zbl 0932.05001 · doi:10.1090/s0894-0347-99-00307-0
[30] Tracy C A and Widom H 1994 Level spacing distributions and the Airy kernel Commun. Math. Phys.159 151 · Zbl 0789.35152 · doi:10.1007/bf02100489
[31] Gross D J and Witten E 1980 Possible third order phase transition in the large N lattice gauge theory Phys. Rev. D 21 446 · doi:10.1103/physrevd.21.446
[32] Wadia S R 1980 N = infinity phase transition in a class of exactly soluble model lattice gauge theories Phys. Lett. B 93 403 · doi:10.1016/0370-2693(80)90353-6
[33] Hisakado M 1996 Unitary matrix models and Painleve III Mod. Phys. Lett. A 11 3001 · Zbl 1022.81739 · doi:10.1142/s0217732396002976
[34] Hisakado M 1997 Unitary matrix models with a topological term and discrete time Toda equation Phys. Lett. B 395 208 · doi:10.1016/s0370-2693(97)00067-1
[35] Borodin A, Okounkov A and Olshanski G 2000 Asymptotics of Plancherel measures for symmetric groups J. Amer. Math. Soc.13 481 · Zbl 0938.05061 · doi:10.1090/s0894-0347-00-00337-4
[36] Johansson K 1998 The longest increasing subsequence in a random permutation and a unitary random matrix model Math. Res. Lett.5 63 · Zbl 0923.60008 · doi:10.4310/mrl.1998.v5.n1.a6
[37] Johansson K 2001 Discrete orthogonal polynomial ensembles and the plancherel measure Annals of Mathematics153 259 · Zbl 0984.15020 · doi:10.2307/2661375
[38] Witten E 2011 Analytic continuation Of Chern-Simons theory AMS/IP Stud . Adv. Math.50 347 (arXiv:1001.2933) · Zbl 1337.81106 · doi:10.1090/amsip/050/19
[39] Cutkosky S D 2018 Introduction to Algebraic Geometry(Graduate Studies in Mathematics) vol 188 (Providence, RI: American Mathematical Society) · Zbl 1396.14001 · doi:10.1090/gsm/188
[40] Cunden F D, Facchi P, Ligabò M and Vivo P 2017 Universality of the third-order phase transition in the constrained Coulomb gas J. Stat. Mech. 053303 · Zbl 1457.82297 · doi:10.1088/1742-5468/aa690c
[41] Cunden F D, Facchi P, Ligabò M and Vivo P 2019 Third-order phase transition: random matrices and screened Coulomb gas with hard walls J. Stat. Phys.175 1262 · Zbl 1420.82002 · doi:10.1007/s10955-019-02281-9
[42] Chen Y and Mekareeya N 2011 The Hilbert series of U/SU SQCD and Toeplitz determinants Nucl. Phys.850 553 · Zbl 1229.81300 · doi:10.1016/j.nuclphysb.2011.05.012
[43] Basor E, Chen Y and Mekareeya N 2012 The Hilbert series of Nucl. Phys. B 860 421 · Zbl 1246.81419 · doi:10.1016/j.nuclphysb.2012.02.018
[44] Chen Y, Jokela N, Jarvinen M and Mekareeya N 2013 Moduli space of supersymmetric QCD in the Veneziano limit J. High Energy Phys. JHEP09(2013)131 · doi:10.1007/jhep09(2013)131
[45] Witte N S and Forrester P J 2000 Gap probabilities in the finite and scaled Cauchy random matrix ensembles Nonlinearity13 1965 · Zbl 0980.15018 · doi:10.1088/0951-7715/13/6/305
[46] Brouwer P W 1995 Generalized circular ensemble of scattering matrices for a chaotic cavity with non-ideal leads Phys. Rev. B 51 16878 · doi:10.1103/physrevb.51.16878
[47] Koepf W and Masjed-Jamei M 2006 A generic polynomial solution for the differential equation of hypergeometric type and six sequences of orthogonal polynomials related to it Integral Transforms Spec. Funct.17 559 · Zbl 1099.33007 · doi:10.1080/10652460600725234
[48] Masjed-Jamei M, Marcellán F and Huertas E J 2014 A finite class of orthogonal functions generated by routh-romanovski polynomials Complex Variables and Elliptic Equations59 162 · Zbl 1288.33001 · doi:10.1080/17476933.2012.727406
[49] Lesky P A 1996 Endliche und unendliche Systeme von kontinuierlichen klassischen Orthogonalpolynomen Z. Angew. Math. Mech.76 181 · Zbl 0925.73699 · doi:10.1002/zamm.19960760317
[50] Koekoek R, Lesky P A and Swarttouw R F 2010 Hypergeometric Orthogonal Polynomials and Their Q-Analogues(Springer Monographs in Mathematics) (Berlin: Springer) · Zbl 1200.33012 · doi:10.1007/978-3-642-05014-5
[51] Jordaan K and Toókos F 2014 Orthogonality and asymptotics of pseudo-Jacobi polynomials for non-classical parameters J. Approx. Theory178 1 · Zbl 1282.33013 · doi:10.1016/j.jat.2013.10.003
[52] Song Z and Wong R 2017 Asymptotics of pseudo-Jacobi polynomials with varying parameters Stud. Appl. Math.139 179 · Zbl 1376.33016 · doi:10.1111/sapm.12177
[53] Wong R 2018 Asymptotics of orthogonal polynomials Int. J. Numer. Anal. Model.15 193 · Zbl 1406.33008
[54] Aldaya V, Bisquert J and Navarro-Salas J 1991 The quantum relativistic harmonic oscillator: generalized Hermite polynomials Phys. Lett. A 156 381 · doi:10.1016/0375-9601(91)90711-g
[55] Romanovski V 1929 Sur quelques classes nouvelles de polynomes orthogonaux C. R. Acad. Sci.188 1023 · JFM 55.0915.03
[56] Raposo A P, Weber H J, Alvarez-Castillo D E and Kirchbach M 2007 Romanovski polynomials in selected physics problems Cent. Eur. J. Phys.5 253 · doi:10.2478/s11534-007-0018-5
[57] Askey R 1987 Beta integrals and the associated orthogonal polynomials Number Theory(Lecture Notes in Mathematics) vol 1395 (Berlin: Springer) pp 84-121 · Zbl 0683.33002 · doi:10.1007/BFb0086401
[58] Ekström S-E, Garoni C and Serra-Capizzano S 2018 Are the eigenvalues of banded symmetric toeplitz matrices known in almost closed form? Experimental Mathematics27 478 · Zbl 1405.15037 · doi:10.1080/10586458.2017.1320241
[59] Barrera M, Böttcher A, Grudsky S M and Maximenko E A 2018 Eigenvalues of even very nice Toeplitz matrices can be unexpectedly erratic The Diversity and Beauty of Applied Operator Theory(Operator Theory Advances and Applications) vol 268 (Basel: Birkhäuser/Springer) pp 51-77 · doi:10.1007/978-3-319-75996-8_2
[60] Deift P, Its A and Krasovsky I 2011 Asymptotics of Toeplitz, Hankel, and Toeplitz + Hankel determinants with Fisher-Hartwig singularities Ann. Math.174 1243 (arXiv:0905.0443) · Zbl 1232.15006 · doi:10.4007/annals.2011.174.2.12
[61] García-García D and Tierz M 2020 Matrix models for classical groups and Toeplitz ± Hankel minors with applications to Chern -Simons theory and fermionic models J. Phys. A: Math. Theor.53 345201 · Zbl 1506.81053 · doi:10.1088/1751-8121/ab9b4d
[62] Baik J and Rains E M 2001 Algebraic aspects of increasing subsequences Duke Math. J.109 1 · Zbl 1007.05096 · doi:10.1215/s0012-7094-01-10911-3
[63] Brézin E and Hikami S 2000 Characteristic polynomials of random matrices Commun. Math. Phys.214 111-35 · Zbl 1042.82017 · doi:10.1007/s002200000256
[64] Baik J, Deift P and Strahov E 2003 Products and ratios of characteristic polynomials of random Hermitian matrices J. Math. Phys.44 3657 · Zbl 1062.15014 · doi:10.1063/1.1587875
[65] Elouafi M 2014 On a relationship between Chebyshev polynomials and Toeplitz determinants Appl. Math. Comput.229 27 · Zbl 1364.15022 · doi:10.1016/j.amc.2013.12.029
[66] Mason J C 1993 Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration, and integral transforms J. Comput. Appl. Math.49 169 · Zbl 0793.33010 · doi:10.1016/0377-0427(93)90148-5
[67] Vein R and Dale P 1999 Determinants and Their Applications in Mathematical Physics(Applied Mathematical Sciences vol 134) (New York: Springer) · Zbl 0913.15005
[68] Elouafi M 2015 A Widom like formula for some Toeplitz plus Hankel determinants J. Math. Anal. Appl.422 240 · Zbl 1300.15003 · doi:10.1016/j.jmaa.2014.08.043
[69] Leclerc B 1998 On certain formulas of Karlin and Szegö Sém. Lothar. Combin.41 B41d 21 · Zbl 0916.05076
[70] Basor E and Chen Y 2005 Perturbed hankel determinants J. Phys. A: Math. Gen.38 10101 · Zbl 1086.15505 · doi:10.1088/0305-4470/38/47/004
[71] Strang G and MacNamara S 2014 Functions of difference matrices are toeplitz plus hankel SIAM Rev.56 525 · Zbl 1304.65195 · doi:10.1137/120897572
[72] Cunden F D, Mezzadri F and O’Connell N 2018 Free fermions and the classical compact groups J. Stat. Phys.171 768 · Zbl 1395.82023 · doi:10.1007/s10955-018-2029-6
[73] Charlier C and Gharakhloo R 2019 Asymptotics of hankel determinants with a laguerre-type or jacobi-type potential and fisher-hartwig singularities (arXiv:1902.08162)
[74] Winn B 2012 Derivative moments for characteristic polynomials from the CUE Commun. Math. Phys.315 531 · Zbl 1256.15021 · doi:10.1007/s00220-012-1512-1
[75] Basor E, Bleher P, Buckingham R, Grava T, Its A, Its E et al 2019 A representation of joint moments of CUE characteristic polynomials in terms of painlevé functions Nonlinearity32 4033 · Zbl 1423.60014 · doi:10.1088/1361-6544/ab28c7
[76] Cohen P, Cunden F D and O’Connell N 2020 Moments of discrete orthogonal polynomial ensembles Electron. J. Probab.25 72 · Zbl 1444.60010 · doi:10.1214/20-EJP472
[77] Hanada M and Robinson B 2019 Partial-symmetry-breaking phase transitions (arXiv:1911.06223)
[78] Santilli L and Tierz M 2020 Phase transition in complex-time Loschmidt echo of short and long range spin chain J. Stat. Mech. 063102 · Zbl 1457.82300 · doi:10.1088/1742-5468/ab837b
[79] Jain S, Minwalla S, Sharma T, Takimi T, Wadia S R and Yokoyama S 2013 Phases of large N vector Chern-Simons theories on S2 × S1 J. High Energy Phys. JHEP09(2013)009 · doi:10.1007/jhep09(2013)009
[80] Di Francesco P, Ginsparg P H and Zinn-Justin J 1995 2-D Gravity and random matrices Phys. Rep.254 1 · doi:10.1016/0370-1573(94)00084-g
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.