×

An efficient algorithm with stabilized finite element method for the Stokes eigenvalue problem. (English) Zbl 1426.76317

Summary: This paper provides a two-space stabilized mixed finite element scheme for the Stokes eigenvalue problem based on local Gauss integration. The two-space strategy contains solving one Stokes eigenvalue problem using the \(P_1 - P_1\) finite element pair and then solving an additional Stokes problem using the \(P_2 - P_2\) finite element pair. The postprocessing technique which increases the order of mixed finite element space by using the same mesh can accelerate the convergence rate of the eigenpair approximations. Moreover, our method can save a large amount of computational time and the corresponding convergence analysis is given. Finally, numerical results are presented to confirm the theoretical analysis.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
76D07 Stokes and related (Oseen, etc.) flows

References:

[1] Babuska, I.; Osborn, J. E.; Ciarlet, P. G.; Lions, J. L., Eigenvalue problems, Hand-Book of Numerical Analysis, Volume II, Finite Element Method (Part I), 641-787, (1991), Amsterdam, The Netherlands: North-Holland Publishing, Amsterdam, The Netherlands · Zbl 0875.65087
[2] Mercier, B.; Osborn, J.; Rappaz, J.; Raviart, P.-A., Eigenvalue approximation by mixed and hybrid methods, Mathematics of Computation, 36, 154, 427-453, (1981) · Zbl 0472.65080 · doi:10.1090/S0025-5718-1981-0606505-9
[3] Babuska, I.; Osborn, J. E., Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Mathematics of Computation, 52, 186, 275-297, (1989) · Zbl 0675.65108 · doi:10.1090/S0025-5718-1989-0962210-8
[4] Chen, W.; Lin, Q., Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method, Applications of Mathematics, 51, 1, 73-88, (2006) · Zbl 1164.65489 · doi:10.1007/s10492-006-0006-x
[5] Yin, X.; Xie, H.; Jia, S.; Gao, S., Asymptotic expansions and extrapolations of eigenvalues for the Stokes problem by mixed finite element methods, Journal of Computational and Applied Mathematics, 215, 1, 127-141, (2008) · Zbl 1149.65090 · doi:10.1016/j.cam.2007.03.028
[6] Lovadina, C.; Lyly, M.; Stenberg, R., A posteriori estimates for the Stokes eigenvalue problem, Numerical Methods for Partial Differential Equations, 25, 1, 244-257, (2009) · Zbl 1169.65109 · doi:10.1002/num.20342
[7] Chen, H.; Jia, S.; Xie, H., Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems, Applications of Mathematics, 54, 3, 237-250, (2009) · Zbl 1212.65431 · doi:10.1007/s10492-009-0015-7
[8] Huang, P.; He, Y.; Feng, X., Two-level stabilized finite element method for Stokes eigenvalue problem, Applied Mathematics and Mechanics, 33, 5, 621-630, (2012) · Zbl 1266.65192 · doi:10.1007/s10483-012-1575-7
[9] Ahmad, F.; Al-Aidarous, E. S.; Alrehaili, D. A.; Ekström, S.; Furci, I.; Serra-Capizzano, S., Are the eigenvalues of preconditioned banded symmetric Toeplitz matrices known in almost closed form?, Numerical Algorithms, 1-27, (2017) · Zbl 1398.65055 · doi:10.1007/s11075-017-0404-z
[10] Ekström, S.; Garoni, C.; Serra-Capizzano, S., Are the eigenvalues of banded symmetric toeplitz matrices known in almost closed form?, Experimental Mathematics, 1-10, (2017) · Zbl 1405.15037 · doi:10.1080/10586458.2017.1320241
[11] Xu, J., A novel two-grid method for semilinear elliptic equations, SIAM Journal on Scientific Computing, 15, 1, 231-237, (1994) · Zbl 0795.65077 · doi:10.1137/0915016
[12] Xu, J., Two-grid discretization techniques for linear and nonlinear PDEs, SIAM Journal on Numerical Analysis, 33, 5, 1759-1777, (1996) · Zbl 0860.65119 · doi:10.1137/S0036142992232949
[13] Xu, J.; Zhou, A., A two-grid discretization scheme for eigenvalue problems, Mathematics of Computation, 70, 233, 17-25, (2001) · Zbl 0959.65119 · doi:10.1090/S0025-5718-99-01180-1
[14] Chien, C. S.; Jeng, B. W., A two-grid finite element discretization scheme for nonlinear eigenvalue problems, Computational Methods, 1951-1955, (2006)
[15] Chien, C.-S.; Jeng, B.-W., A two-grid discretization scheme for semilinear elliptic eigenvalue problems, SIAM Journal on Scientific Computing, 27, 4, 1287-1304, (2006) · Zbl 1095.65100 · doi:10.1137/030602447
[16] Chen, H.; Jia, S.; Xie, H., Postprocessing and higher order convergence for the mixed finite element approximations of the eigenvalue problem, Applied Numerical Mathematics, 61, 4, 615-629, (2011) · Zbl 1209.65126 · doi:10.1016/j.apnum.2010.12.007
[17] Hu, X.; Cheng, X., Acceleration of a two-grid method for eigenvalue problems, Mathematics of Computation, 80, 275, 1287-1301, (2011) · Zbl 1232.65141 · doi:10.1090/S0025-5718-2011-02458-0
[18] Yang, Y.; Fan, X., Generalized Rayleigh quotient and finite element two-grid discretization schemes, Science China Mathematics, 52, 9, 1955-1972, (2009) · Zbl 1188.65151 · doi:10.1007/s11425-009-0016-8
[19] Yang, Y.; Bi, H., Two-grid finite element discretization schemes based on shifted-inverse power method for elliptic eigenvalue problems, SIAM Journal on Numerical Analysis, 49, 4, 1602-1624, (2011) · Zbl 1236.65143 · doi:10.1137/100810241
[20] Weng, Z.; Yang, J. Z.; Lu, X., Two-level quadratic equal-order stabilized method for the Stokes eigenvalue problem, International Journal of Computer Mathematics, 92, 2, 337-348, (2015) · Zbl 1308.76178 · doi:10.1080/00207160.2014.891020
[21] Weng, Z.; Feng, X.; Zhai, S., Investigations on two kinds of two-grid mixed finite element methods for the elliptic eigenvalue problem, Computers & Mathematics with Applications, 64, 8, 2635-2646, (2012) · Zbl 1268.65157 · doi:10.1016/j.camwa.2012.07.009
[22] Sloan, I. H., Iterated Galerkin method for eigenvalue problems, SIAM Journal on Numerical Analysis, 13, 5, 753-760, (1976) · Zbl 0359.65052 · doi:10.1137/0713061
[23] Lin, Q.; Xie, G. Q., Acceleration of FEA for eigenvalue problems, Science Bulletin, 26, 449-452, (1981)
[24] Racheva, M. R.; Andreev, A. B., Superconvergence postprocessing for eigenvalues, Computational Methods in Applied Mathematics, 2, 2, 171-185, (2002) · Zbl 1012.65113
[25] Xie, H.; Yin, X., Acceleration of stabilized finite element discretizations for the Stokes eigenvalue problem, Advances in Computational Mathematics, 41, 4, 799-812, (2015) · Zbl 1330.76080 · doi:10.1007/s10444-014-9386-8
[26] Andreev, A. B.; Lazarov, R. D.; Racheva, M. R., Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems, Journal of Computational and Applied Mathematics, 182, 2, 333-349, (2005) · Zbl 1075.65136 · doi:10.1016/j.cam.2004.12.015
[27] Wu, J.; Huang, P.; Feng, X.; Liu, D., An efficient two-step algorithm for steady-state natural convection problem, International Journal of Heat and Mass Transfer, 101, 387-398, (2016) · doi:10.1016/j.ijheatmasstransfer.2016.05.061
[28] Wu, J.; Liu, D.; Feng, X.; Huang, P., An efficient two-step algorithm for the stationary incompressible magnetohydrodynamic equations, Applied Mathematics and Computation, 302, 21-33, (2017) · Zbl 1411.76071 · doi:10.1016/j.amc.2017.01.005
[29] Huang, P.; Feng, X.; He, Y., An efficient two-step algorithm for the incompressible flow problem, Advances in Computational Mathematics, 41, 6, 1059-1077, (2015) · Zbl 1334.76080 · doi:10.1007/s10444-014-9400-1
[30] Bochev, P. B.; Dohrmann, C. R.; Gunzburger, M., Stabilization of low-order mixed finite elements for the Stokes equations, SIAM Journal on Numerical Analysis, 44, 1, 82-101, (2006) · Zbl 1145.76015 · doi:10.1137/S0036142905444482
[31] Li, J.; He, Y.; Chen, Z., A new stabilized finite element method for the transient Navier-Stokes equations, Computer Methods Applied Mechanics and Engineering, 197, 1–4, 22-35, (2007) · Zbl 1169.76392 · doi:10.1016/j.cma.2007.06.029
[32] Li, J.; He, Y., A stabilized finite element method based on two local Gauss integrations for the Stokes equations, Journal of Computational and Applied Mathematics, 214, 1, 58-65, (2008) · Zbl 1132.35436 · doi:10.1016/j.cam.2007.02.015
[33] Becker, R.; Hansbo, P., A simple pressure stabilization method for the Stokes equation, Communications in Numerical Methods in Engineering, 24, 11, 1421-1430, (2008) · Zbl 1153.76036 · doi:10.1002/cnm.1041
[34] Zheng, H.; Hou, Y.; Shi, F.; Song, L., A finite element variational multiscale method for incompressible flows based on two local Gauss integrations, Journal of Computational Physics, 228, 16, 5961-5977, (2009) · Zbl 1168.76028 · doi:10.1016/j.jcp.2009.05.006
[35] Zheng, H.; Shan, L.; Hou, Y., A quadratic equal-order stabilized method for stokes problem based on two local gauss integrations, Numerical Methods for Partial Differential Equations, 26, 5, 1180-1190, (2010) · Zbl 1425.35168 · doi:10.1002/num.20486
[36] Zhang, T.; Liang, H., Decoupled stabilized finite element methods for the Boussinesq equations with temperature-dependent coefficients, International Journal of Heat and Mass Transfer, 110, 151-165, (2017) · doi:10.1016/j.ijheatmasstransfer.2017.03.002
[37] Zhang, T.; Qian, Y.; HuangFu, Y., Two-level finite element variational multiscale method based on bubble functions for the steady incompressible MHD flow, International Journal of Computer Mathematics, 94, 3, 515-535, (2017) · Zbl 1457.65226 · doi:10.1080/00207160.2015.1115023
[38] Ciarlet, P. G., The Finite Element Method for Elliptic Problems, (1978), Amsterdam, The Netherlands: North-Holland Publishing, Amsterdam, The Netherlands · Zbl 0383.65058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.