Karami, Saeed Numerical radius of the powers of Jordan block and its application for eigenvalue of nonnegative symmetric Toeplitz matrices. (English) Zbl 1529.15010 Appl. Math. E-Notes 23, 537-543 (2023). Summary: In this paper, we present a formula for the numerical radius of the powers of a Jordan block. This formula gives us an analytic and simple upper bound for the maximum eigenvalues of the nonnegative symmetric Toeplitz matrices. Numerical examples are provided to evaluate the accuracy level of the obtained upper bound in comparison with some existing bounds. MSC: 15A42 Inequalities involving eigenvalues and eigenvectors 15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory 15A20 Diagonalization, Jordan forms 15B05 Toeplitz, Cauchy, and related matrices 47A12 Numerical range, numerical radius Keywords:numerical radius; Jordan block; Toeplitz matrices × Cite Format Result Cite Review PDF Full Text: Link References: [1] D. Bini and M. Capovani, Spectral and computational properties of band symmetric Toeplitz matrices, Linear Algebra Appl., 52(1983), 99-126. · Zbl 0549.15005 [2] J. M. Bogoya, A. Bottcher, S. M. Grudsky and E. A. Maximenko, Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols, J. Math. Anal. Appl., 422(2015), 1308-1334. · Zbl 1302.65086 [3] J. R. Bunch, Stability of methods for solving Toeplitz systems of equations, SIAM J. Sci. Stat. Comput., 6(1985), 349-364. · Zbl 0569.65019 [4] S. E. Ekstrom, C. Garoni and S. Serra-Capizzano, Are the eigenvalues of banded symmetric Toeplitz matrices known in almost closed form?, Exp. Math., 27(2018), 478-487. · Zbl 1405.15037 [5] M. Eloua…, An eigenvalue localization theorem for pentadiagonal symmetric Toeplitz matrices, Linear Algebra Appl., 435(2011), 2986-2998. · Zbl 1230.15017 [6] M. Eloua…, On computing the eigenvalues of band Toeplitz matrices, J. Comput. Appl. Math., 357(2019), 12-25. · Zbl 1415.15030 [7] L. Galligani, A Comparison of the Methods for Computing the Eigenvalues and Eigenvectors of a Matrix, Joint Nuclear Research Center, Ispra Establishment, Italy, 1968. [8] R. A. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, 2013. · Zbl 1267.15001 [9] R. A. Horn and C. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1994. · Zbl 0801.15001 [10] A. Melman, Extreme eigenvalues of real symmetric Toeplitz matrices, Math. Comp., 70(2000), 649-669. · Zbl 0968.65018 [11] M. Shams Solary, Computational properties of pentadiagonal and anti-pentadiagonal block band ma-trices with perturbed corners, Soft. Comput., 24(2020), 301-309. · Zbl 1436.65058 [12] J. Shen and T. Tang, Spectral and High-order Methods with Applications, Science Press, Beijing, 2006. · Zbl 1234.65005 [13] H. Voss, Bounds for the minimum eigenvalue of a symmetric Toeplitz matrix, Electron. Trans. Numer. Anal., 8(1999), 127-137. · Zbl 0936.65044 [14] C. Wang, H. Li and D. Zhao, An explicit formula for the inverse of a pentadiagonal Toeplitz matrix, J. Comput. Appl. Math., 278(2015), 12-18. · Zbl 1304.15008 [15] F. Zhang, Matrix Theory, Basic Results and Techniques, 2 nd ed., Springer, 2011. · Zbl 1229.15002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.