×

On the dependence on \(p\) of the variational eigenvalues of the \(p\)-Laplace operator. (English) Zbl 1334.35196

It is known that the quasilinear eigenvalue problem \(-\Delta_p u-\mu|u|^{p-2}u\) in \(\Omega\), \(u= 0\) on \(\partial\Omega\), where \(\Omega\) is a bounded domain in \(\mathbb{R}^N\), \(p>1\), and \(\Delta\) is the quasilinear differential operator called \(p\)-Laplacian, has a first positive eigenvalue \(\mu^p>0\), which is simple, having a positive eigenfunction \(u\in W^{1,p}(\Omega)\) (normalized by \(\| u\|_p=1\)).
It is also known that \(\mu_1\) as a function of \(p\) is right-continuous, while some condition on \(\partial\Omega\) is required for left-continuity. In this case, we have \[ \lim_{s\to p^-}\mu^s_1= \mu^p_1\tag{1} \] and \[ \lim_{s\to p^-}\int\nabla u_s-\nabla u_p|^p\,dx= 0.\tag{2} \] It was proved by Lindqvist that (2) implies (1), the converse being an open problem. Here, the authors introduce a bigger space and an associated eigenvalue problem as a tool in order to prove (Theorem 4.1) that five other statements are equivalent to (1). In particular, this allows to settle the open problem in the affirmative.

MSC:

35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
35B35 Stability in context of PDEs
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J70 Degenerate elliptic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Attouch, H., Variational convergence for functions and operators (1984), Boston · Zbl 0561.49012
[2] Bartsch, T., Topological methods for variational problems with symmetries (1993), Berlin · Zbl 0789.58001
[3] Belloni, M., Kawohl, B.: A direct uniqueness proof for equations involving the p-Laplace operator. Manuscripta Math. 109(2), 229-231 (2002) · Zbl 1100.35032 · doi:10.1007/s00229-002-0305-9
[4] Brasco, L., Franzina, G.: A note on positive eigenfunctions and hidden convexity. Arch. Math. (Basel) 99(4), 367-374 (2012) · Zbl 1256.35042 · doi:10.1007/s00013-012-0441-8
[5] Brezis, H., Functional analysis, Sobolev spaces and partial differential equations (2011), New York · Zbl 1220.46002
[6] Champion, T., De Pascale, L.: Asymptotic behaviour of nonlinear eigenvalue problems involving p-Laplacian-type operators. Proc. Roy. Soc. Edinburgh Sect. A 137 (6), 1179-1195 (2007) · Zbl 1134.35013 · doi:10.1017/S0308210506000667
[7] Dal Maso, G., An introduction to Γ-convergence (1993), Boston · Zbl 0816.49001
[8] Degiovanni, M., Marzocchi, M.: Limit of minimax values under Γ-convergence. Electron. J. Differential Equations 2014(266), 19 (2014) · Zbl 1319.35146
[9] DiBenedetto, E.: C1+α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7 (8), 827-850 (1983) · Zbl 0539.35027 · doi:10.1016/0362-546X(83)90061-5
[10] El Khalil, A., El Manouni, S., Ouanan, M.: On the principal eigencurve of the p-Laplacian: stability phenomena. Canad. Math. Bull. 49(3), 358-370 (2006) · Zbl 1111.35027 · doi:10.4153/CMB-2006-036-5
[11] El Khalil, A., Lindqvist, P., Touzani, A.: On the stability of the first eigenvalue of Apu+λg(x)|u|p−2u=0 with varying p. Rend. Mat. Appl. (7) 24(2), 321-336 (2004) · Zbl 1095.35019
[12] Fadell, E. R., Rabinowitz, P. H.: Bifurcation for odd potential operators and an alternative topological index. J. Functional Analysis 26(1), 48-67 (1977) · Zbl 0363.47029 · doi:10.1016/0022-1236(77)90015-5
[13] Fadell, E. R., Rabinowitz, P. H.: Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. Invent. Math. 45(2), 139-174 (1978) · Zbl 0403.57001 · doi:10.1007/BF01390270
[14] Kawohl, B., Lindqvist, P.: Positive eigenfunctions for the p-Laplace operator revisited. Analysis (Munich) 26(4), 545-550 (2006) · Zbl 1136.35063
[15] Kawohl, B., Lucia, M., Prashanth, S.: Simplicity of the principal eigenvalue for indefinite quasilinear problems. Adv. Differential Equations 12(4), 407-434 (2007) · Zbl 1158.35069
[16] Krasnosel’skiı̆, MA, Topological methods in the theory of nonlinear integral equations (1964), New York
[17] Lindqvist, P.: On the equation div (|∇u|p−2∇u)+λ|u|p−2u=0. Proc. Amer. Math. Soc. 109(1), 157-164 (1990). and 116 (1992), no 2, 583-584 · Zbl 0714.35029
[18] Lindqvist, P.: On nonlinear Rayleigh quotients. Potential Anal. 2(3), 199-218 (1993) · Zbl 0795.35039 · doi:10.1007/BF01048505
[19] Lindqvist, P.; Ciatti, P. (ed.); Gonzalez, E. (ed.); Lanza de Cristoforis, M. (ed.); Leonardi, GP (ed.), A nonlinear eigenvalue problem (2008), Hackensack
[20] Lucia, M., Prashanth, S.: Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight. Arch. Math. (Basel) 86(1), 79-89 (2006) · Zbl 1357.35069 · doi:10.1007/s00013-005-1512-x
[21] Lucia, M., Schuricht, F.: A class of degenerate elliptic eigenvalue problems. Adv. Nonlinear Anal. 2(1), 91-125 (2013) · Zbl 1274.35261
[22] Parini, E.: Continuity of the variational eigenvalues of the p-Laplacian with respect to p. Bull. Aust. Math. Soc. 83(3), 376-381 (2011) · Zbl 1217.35130 · doi:10.1017/S000497271100205X
[23] Rabinowitz, P. H.: Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, vol. 65. Published for the Conference Board of the Mathematical Sciences, Washington (1986) · Zbl 0609.58002 · doi:10.1090/cbms/065
[24] Szulkin, A., Willem, M.: Eigenvalue problems with indefinite weight. Studia Math. 135(2), 191-201 (1999) · Zbl 0931.35121
[25] Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110, 353-372 (1976) · Zbl 0353.46018 · doi:10.1007/BF02418013
[26] Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations 51(1), 126-150 (1984) · Zbl 0488.35017 · doi:10.1016/0022-0396(84)90105-0
[27] Vázquez, J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12(3), 191-202 (1984) · Zbl 0561.35003 · doi:10.1007/BF01449041
[28] Willem, M.: Minimax theorems, Progress in nonlinear differential equations and their applications, vol. 24. Birkhäuser, Boston (1996) · Zbl 0856.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.