×

Witt-Burnside functor attached to \(\boldsymbol{Z}_p^2\) and \(p\)-adic Lipschitz continuous functions. (English) Zbl 1458.43002

Let \(p\) be a prime number and denote by \(\mathbb{Z}_p\) the \(p\)-adic integers. It is known that for profinite groups \(G\) there is a ring valued functor \(\mathbf{W}_G\); in the special case \(G = \mathbb{Z}_p$, $\mathbf{W}_{\mathbb{Z}_p}(k)\) is the set of \(p\)-typical Witt vectors over a field \(k\).
A topology, that the authors call the initial vanishing topology, is defined on \(\mathbf{W}_{\mathbb{Z}_p^d}(k)\), where \(k\) is a field of characteristic \(p\). For \(d=1\), this topology agrees with the topology defined by the maximal ideal in \(\mathbf{W}_{\mathbb{Z}_p}(k)\). However, it is shown in this paper that for \(d \geq 2\), the initial vanishing topology and the topology defined by the maximal ideal in \(\mathbf{W}_{\mathbb{Z}_p^d} (k)\) do not agree.
Another result proved in this paper is:
There is a homomorphism from from \[\mathbf{W}_{\mathbb{Z}_p^2}(k) \rightarrow \mathcal{C}(\mathbb{P}^1(\mathbb{Q}_p), \mathbf{W}_{\mathbb{Z}_p}(k)), \] where \(\mathcal{C}(\mathbb{P}^1(\mathbb{Q}_p), \mathbf{W}_{\mathbb{Z}_p}(k))\) is the ring of continuous functions from \(\mathbb{P}^1(\mathbb{Q}_p)\) to the \(p\)-typical Witt vectors \(\mathbf{W}_{\mathbb{Z}_p}(k)\).
Using this result the authors are able to show that the Krull dimension of \(\mathbf{W}_{\mathbb{Z}_p^d}(k)\) is infinite for \(d \geq 2\).

MSC:

43A15 \(L^p\)-spaces and other function spaces on groups, semigroups, etc.
13F35 Witt vectors and related rings
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] A. W. M. Dress and C. Siebeneicher, “The Burnside ring of profinite groups and the Witt vector construction”, Adv. in Math. 70:1 (1988), 87-132. · Zbl 0691.13026 · doi:10.1016/0001-8708(88)90052-7
[2] J. Elliott, “Constructing Witt-Burnside rings”, Adv. Math. 203:1 (2006), 319-363. · Zbl 1098.13034 · doi:10.1016/j.aim.2005.04.014
[3] L. E. Miller, On the structure of Witt-Burnside rings attached to pro-\(p\) groups, Ph.D. thesis, University of Connecticut, 2010, https://opencommons.uconn.edu/dissertations/AAI3420179.
[4] L. E. Miller, “A Witt-Burnside ring attached to a pro-dihedral group”, Int. J. Number Theory 9:3 (2013), 745-757. · Zbl 1357.13026 · doi:10.1142/S1793042112501588
[5] M. Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics 13, Interscience, 1962. · Zbl 0123.03402
[6] Y.-T. Oh, “\(q\)-deformation of Witt-Burnside rings”, Math. Z. 257:1 (2007), 151-191. · Zbl 1152.19001 · doi:10.1007/s00209-007-0119-2
[7] Y.-T. Oh, “Decomposition of the Witt-Burnside ring and Burnside ring of an abelian profinite group”, Adv. Math. 222:2 (2009), 485-526. · Zbl 1228.05326 · doi:10.1016/j.aim.2009.05.004
[8] Y.-T. Oh, “Classification and decomposition of the Witt-Burnside ring and Burnside ring of a profinite group”, Proc. Lond. Math. Soc. \((3) 104\):4 (2012), 649-689. · Zbl 1241.13019 · doi:10.1112/plms/pdr045
[9] M. S. Osborne, Basic homological algebra, Graduate Texts in Mathematics 196, Springer, 2000. · Zbl 0948.18001
[10] L. Ribes and P. Zalesskii, Profinite groups, Ergebnisse der Mathematik \((3) 40\), Springer, 2000. · Zbl 0949.20017
[11] W. H. Schikhof, Ultrametric calculus: an introduction to \(p\)-adic analysis, Cambridge Studies in Advanced Mathematics 4, Cambridge University Press, 2006. · Zbl 1152.26025
[12] H. Schoutens, The use of ultraproducts in commutative algebra, Lecture Notes in Mathematics 1999, Springer, 2010. · Zbl 1205.13002
[13] J. · Zbl 0548.20018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.