×

New regularity results and finite element error estimates for a class of parabolic optimal control problems with pointwise state constraints. (English) Zbl 1473.35609

Summary: We study first-order necessary optimality conditions and finite element error estimates for a class of distributed parabolic optimal control problems with pointwise state constraints. It is demonstrated that, if the bound in the state constraint and the differential operator in the governing PDE fulfil a certain compatibility assumption, then locally optimal controls satisfy a stationarity system that allows to significantly improve known regularity results for adjoint states and Lagrange multipliers in the parabolic setting. In contrast to classical approaches to first-order necessary optimality conditions for state-constrained problems, the main arguments of our analysis require neither a Slater point, nor uniform control constraints, nor differentiability of the objective function, nor a restriction of the spatial dimension. As an application of the established improved regularity properties, we derive new finite element error estimates for the dG(0)–cG(1)-discretization of a purely state-constrained linear-quadratic optimal control problem governed by the heat equation. The paper concludes with numerical experiments that confirm our theoretical findings.

MSC:

35Q93 PDEs in connection with control and optimization
35K10 Second-order parabolic equations
35B65 Smoothness and regularity of solutions to PDEs
49K20 Optimality conditions for problems involving partial differential equations
49M41 PDE constrained optimization (numerical aspects)
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford & New York (2000). · Zbl 0957.49001
[2] M.S. Aronna, J.F. Bonnans and A. Kröner, State-constrained control-affine parabolic problems I: first and second order necessary optimality conditions. Preprint arXiv:1906.00237 (2019). · Zbl 1465.49003
[3] H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces. SIAM, Philadelphia (2006). · Zbl 1095.49001
[4] V. Barbu, Optimal Control of Variational Inequalities. Research Notes in Mathematics. Pitman (1984). · Zbl 0574.49005
[5] M. Bergounioux, Optimal control of parabolic problems with state constraints: a penalization method for optimality conditions. Appl. Math. Optim. 29 (1994) 285-307. · Zbl 0813.49024
[6] M. Bergounioux and K. Kunisch, Primal-dual strategy for state-constrained optimal control problems. Comput. Optim. Appl. 22 (2002) 193-224. · Zbl 1015.49026
[7] L. Bonifacius, Numerical Analysis of Parabolic Time-optimal Control Problems. Ph.D. thesis, Technische Universität München (2018). · Zbl 1405.35095
[8] J. Bonnans and P. Jaisson, Optimal control of a parabolic equation with time-dependent state constraints. SIAM J. Control Optim. 48 (2010) 4550-4571. · Zbl 1208.49024
[9] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer Series in Operations Research. Springer, New York (2000). · Zbl 0966.49001
[10] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edn. Springer (2008). · Zbl 1135.65042 · doi:10.1007/978-0-387-75934-0
[11] E. Casas, Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297-1327. · Zbl 0893.49017
[12] E. Casas, M. Mateos and B. Vexler, New regularity results and improved error estimates for optimal control problems with state constraints. ESAIM: COCV 20 (2014) 803-822. · Zbl 1293.49044 · doi:10.1051/cocv/2013084
[13] E. Casas and F. Tröltzsch, Recent advances in the analysis of pointwise state-constrained elliptic optimal control problems. ESAIM Control Optim. Calc. Var. 16 (2010) 581-600. · Zbl 1201.49004 · doi:10.1051/cocv/2009010
[14] C. Christof, Sensitivity Analysis of Elliptic Variational Inequalities of the First and the Second Kind. Ph.D. thesis, Technische Universität Dortmund (2018).
[15] C. Christof, Sensitivity analysis and optimal control of obstacle-type evolution variational inequalities. SIAM J. Control Optim. 57 (2019) 192-218. · Zbl 1408.35094
[16] C. Christof and C. Meyer, A note on a priori L^p-error estimatesfor the obstacle problem. Numer. Math. 139 (2018) 27-45. · Zbl 1442.65352
[17] C. Christof and C. Meyer. Sensitivity analysis for a class of H_0^1-elliptic variational inequalities of the second kind. Set-Valued Var. Anal. 27 (2018) 469-502. · Zbl 1416.35036 · doi:10.1007/s11228-018-0495-2
[18] C. Christof and G. Wachsmuth, On second-order optimality conditions for optimal control problems governed by the obstacle problem. To appear in: Optimization (2020) 1-41. https://doi.org/10.1080/02331934.2020.1778686.
[19] F.H. Clarke, Optimization and Nonsmooth Analysis. SIAM’s Classics in Applied Mathematics. SIAM, Philadelphia, PA (1990). · Zbl 0696.49002
[20] J.C. De Los Reyes, P. Merino, J. Rehberg and F. Tröltzsch, Optimality conditions for state-constrained PDE control problems with time-dependent controls. Control Cybernet. 37 (2008) 5-38. · Zbl 1153.49006
[21] J.C. De Los Reyes and C. Meyer, Strong stationarity conditions for a class of optimization problems governed by variational inequalities of the second kind. J. Optim. Theory Appl. 168 (2016) 375-409. · Zbl 1337.49040
[22] K. Deckelnick and M. Hinze, Variational discretization of parabolic control problems in the presence of pointwise state constraints. J. Comput. Math. 29 (2011) 1-15. · Zbl 1249.49038
[23] K. Disser, A.F.M. ter Elst and J. Rehberg, Hölder estimates for parabolic operators on domains with rough boundary. Ann. Sc. Norm. Super. Pisa Cl. Sci. XVII (2017) 65-79. · Zbl 1387.35324
[24] I. Ekeland and R. Temam, Convex Analysis and Variational Problems. North-Holland (1976). · Zbl 0322.90046
[25] J. Elschner, J. Rehberg and G. Schmidt, Optimal regularity for elliptic transmission problems including C^1 -interfaces. Interfaces Free Bound. 9 (2007) 233-252. · Zbl 1147.47034 · doi:10.4171/IFB/163
[26] K. Eriksson, C. Johnson and V. Thomée, Time discretization of parabolic problems by the discontinuous Galerkin method. ESAIM Math. Model. Numer. Anal. 19 (1985) 611-643. · Zbl 0589.65070
[27] L.C. Evans, Partial Differential Equations, 2nd edn. AMS, Providence, RI (2010). · Zbl 1194.35001
[28] L.A. Fernández, State Constrained Optimal Control for Some Quasilinear Parabolic Equations, edited by K.-H. Hoffmann, G. Leugering, F. Tröltzsch and S. Caesar. Optimal Control of Partial Differential Equations. Birkhäuser, Basel, (1999) 145-156. · Zbl 0933.49015 · doi:10.1007/978-3-0348-8691-8_12
[29] L.A. Fernández, Integral state-constrained optimal control problems for some quasilinear parabolic equations. J. Nonlinear Anal. Optim. 39 (2000) 977-996. · Zbl 0954.49016 · doi:10.1016/S0362-546X(98)00264-8
[30] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, reprint ofthe 1998 edn. Springer 2001. · Zbl 1042.35002
[31] R. Glowinski, Y. Song and X. Yuan, An ADMM numerical approach to linear parabolic state constrained optimal control problems. Numer. Math. 144 (2020) 931-966. · Zbl 1436.49042
[32] W. Gong and M. Hinze, Error estimates for parabolic optimal control problems with control and state constraints. Comput. Optim. Appl. 56 (2013) 131-151. · Zbl 1273.49036
[33] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman (1985). · Zbl 0695.35060
[34] F. Harder and G. Wachsmuth. Comparison of optimality systems for the optimal control of the obstacle problem. GAMM-Mitt. 40 (2018) 312-338. · Zbl 1525.49022 · doi:10.1002/gamm.201740004
[35] J. Heinonen, P. Koselka, N. Shanmugalingam and J.T. Tyson, Sobolev Spaces on Metric Measure Spaces. Vol. 27 of New Mathematical Monographs. Cambridge University Press (2015). · Zbl 1332.46001
[36] M. Hinze. A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30 (2005) 45-61. · Zbl 1074.65069
[37] K. Ito and K. Kunisch, Semi-smooth Newton methods for state-constrained optimal control problems. Systems Control Lett. 50 (2003) 221-228. · Zbl 1157.49311 · doi:10.1016/S0167-6911(03)00156-7
[38] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications. Vol. 31 of Classics in Applied Mathematics. SIAM (2000). · Zbl 0988.49003
[39] D. Leykekhman and B. Vexler, Pointwise best approximation results for Galerkin finite element solutions of parabolic problems. SIAM J. Numer. Anal. 54 (2016) 1365-1384. · Zbl 1382.65319
[40] D. Leykekhman and B. Vexler, Discrete maximal parabolic regularity for Galerkin finite element methods. Numer. Math. 135 (2017) 923-952. · Zbl 1364.65198
[41] F. Ludovici, I. Neitzel and W. Wollner, A priori error estimates for state-constrained semilinear parabolic optimal control problems. J. Optim. Theory Appl. 178 (2018) 317-348. · Zbl 1398.49021
[42] D. Meidner, R. Rannacher and B. Vexler, A priori error estimates for finite element discretizations of parabolic optimization problems with pointwise state constraints in time. SIAM J. Control Optim. 49 (2011) 1961-1997. · Zbl 1234.49029
[43] D. Meidner and B. Vexler, Optimal error estimates for fully discrete Galerkin approximations of semilinear parabolic equations. ESAIM: M2AN 52 (2018) 2307-2325. · Zbl 1412.65152 · doi:10.1051/m2an/2018040
[44] C. Meyer, A. Rösch and F. Tröltzsch, Optimal control of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33 (2006) 209-228. · Zbl 1103.90072
[45] F. Mignot, Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22 (1976) 130-185. · Zbl 0364.49003
[46] B.S. Mordukhovich and K. Zhang, Optimal control of state-constrained parabolic systems with nonregular boundary controllers, in Proceedings of the 36th IEEE Conference on Decision and Control, Vol. 1 (1997) 527-528. · doi:10.1109/CDC.1997.650680
[47] J.J. Moreau, P.D. Panagiotopoulos and G. Strang, Topics in Nonsmooth Mechanics. Birkhäuser, Basel (1988). · Zbl 0646.00014
[48] I. Neitzel and F. Tröltzsch, On convergence of regularization methods for nonlinear parabolic optimal control problems with control and state constraints. Control Cybernet. 37 (2008) 1013-1043. · Zbl 1188.49029
[49] I. Neitzel and F. Tröltzsch, On regularization methods for the numerical solution of parabolic control problems with pointwise state constraints. ESAIM: COCV 15 (2009) 426-453. · Zbl 1171.49017 · doi:10.1051/cocv:2008038
[50] I. Neitzel and F. Tröltzsch, Numerical analysis of state-constrained optimal control problems for PDEs, edited by G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich and S. Ulbrich Constrained Optimization and Optimal Control for Partial Differential Equations. Springer, Basel (2012) 467-482. · Zbl 1356.49051 · doi:10.1007/978-3-0348-0133-1_24
[51] A.H. Schatz and L.B. Wahlbin, Interior maximum-norm estimates for finite element methods, part II. Math. Comput. 64 (1995) 907-928. · Zbl 0826.65091
[52] A. Schiela, State constrained optimal control problems with states of low regularity. SIAM J. Control Optim. 48 (2009) 2407-2432. · Zbl 1203.49032
[53] B. Schweizer, Partielle Differentialgleichungen. Springer, Berlin/Heidelberg (2013). · Zbl 1284.35001 · doi:10.1007/978-3-642-40638-6
[54] F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen. Vieweg und Teubner, Wiesbaden, 2nd edn. (2009). · Zbl 1320.49001 · doi:10.1007/978-3-8348-9357-4
[55] D. Wachsmuth, The regularity of the positive part of functions in L^2 (I ; H^1 (Ω)) ∩ H^1 (I ; H^1 (Ω)^*) with applications to parabolic equations. Comment. Math. Univ. Carolin. 57 (2016) 327-332. · Zbl 1413.46038
[56] G. Wachsmuth, Towards M-stationarity for optimal control of the obstacle problem with control constraints. SIAM J. Control Optim. 54 (2016) 964-986. · Zbl 1337.49042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.