×

A characteristics strategy for solving advection equations in 2D steady flows containing recirculating areas. (English) Zbl 1183.76835

Summary: Numerical modelling of non-Newtonian flows usually involves the coupling between equations of motion characterized by an elliptic character, and the fluid constitutive equation, which defines an advection problem linked to the fluid history. There are different numerical techniques to treat the hyperbolic character of advection equations. In non-recirculating flows, Eulerian discretisations can give an accurate mesh size dependent solution within a short computing time. However, the existence of steady recirculating flow areas induces additional difficulties. Actually, in these flows neither boundary conditions nor initial conditions are known. In a former paper, we have proved that in such flows Eulerian techniques lead to solutions with significant deviations from the exact one. These deviations obviously decrease as the mesh density increases. In other paper, the authors have proved that some linear advection equations modelling non-Newtonian fluid behaviors have only one solution in steady recirculating flows. This solution is found imposing the solution periodicity along the closed streamlines, where the equation is integrated by the method of characteristics. In this paper we propose a characteristics algorithm for solving advection equations in general steady flows, which may contain recirculating areas.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76R99 Diffusion and convection
76A10 Viscoelastic fluids
65M25 Numerical aspects of the method of characteristics for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hand, G. L., A theory of anisotropic fluids, J. Fluid Mech., 13, 33-46 (1962) · Zbl 0108.38402
[2] Advani, S. G.; Tucker III, Ch. L., Closure approximations for three-dimensional structure tensors, J. Rheol., 34, 367-386 (1990)
[3] Tucker III, C. L., Flow regimes for fiber suspensions in narrow gap, J. Non-Newtonian Fluid Mech., 39, 239-268 (1991)
[4] Keunings, R., Viscoelastic flows, (Advani, S. G., Flow and Rheology in Polymer Composites Manufacturing (1994), Elsevier) · Zbl 0613.76007
[5] F.P.T. Baaijens, Experimental and Numerical Analysis of Viscoelastic Flows, PPS-15, Polymer Processing Society, Netherlands, 1999; F.P.T. Baaijens, Experimental and Numerical Analysis of Viscoelastic Flows, PPS-15, Polymer Processing Society, Netherlands, 1999
[6] McLeish, T. C.B.; Larson, R. G., Molecular constitutive equations for a class of branched polymers: the Pom-Pom polymer, J. Rheol., 42, 1, 81-110 (1998)
[7] Givler, C.; Crochet, M. J.; Pipes, R. B., Numerically Predicted Fiber Orientation in Dilute Suspensions, NUMIFORM (1982), Pineridge Press, pp. 559-575
[8] Rosenberg, J.; Den, M.; Keunings, R., Simulation of non-recirculating flows of dilute fiber suspensions, J. Non-Newtonian Fluid Mech., 37, 317-345 (1990) · Zbl 0712.76017
[9] Altan, M. C.; Guçeri, S. I.; Pipes, R. B., Anisotropic channel flow of fiber suspensions, J. Non-Newtonian Fluid Mech., 42, 65-83 (1992) · Zbl 0746.76002
[10] Ausias, G.; Agassant, J. F.; Vincent, M., Flow and fiber orientation calculations in reinforced thermoplastic extruded tubes, Int. Polym. Process., IX, 51-59 (1994)
[11] Chiba, K.; Nakamura, K., Numerical solution of fiber suspensions flow through a complex channel, J. Non-Newtonian Fluid Mech., 78, 167-185 (1998) · Zbl 1143.76590
[12] Poitou, A.; Chinesta, F.; Torres, R., Numerical simulation of the steady recirculating flows of fibers suspensions, J. Non-Newtonian Fluid Mech., 90, 65-80 (2000) · Zbl 0955.76090
[13] Chiba, K.; Yasuda, K.; Nakamura, K., Numerical solution of fiber suspensions flow through a parallel channel by coupling flow fields with fiber orientation distribution, J. Non-Newtonian Fluid Mech., 99, 145-157 (2001) · Zbl 0981.76529
[14] Benqué, J. P.; Ronat, J., Quelques Difficultés des Modèles Numériques en Hydraulique, (Glowinski, R.; Lions, J. L., Computer Methods in Applied Mechanics and Engineering (1982), North Holland), 471-494 · Zbl 0505.76035
[15] Pironneau, O., On the transport-diffusion algorithm and its application to the Navier-Stokes equation, Numer. Math., 38, 309-332 (1982) · Zbl 0505.76100
[16] Fortin, M.; Esselaqui, D., A finite element procedure for viscoelastic flows, Int. J. Numer. Methods Fluids, 7, 1035-1052 (1987) · Zbl 0634.76007
[17] Phillips, R. M.; Phillips, T. N., Flow past a cylinder using a semi-Lagrangian spectral element method, Appl. Numer. Math., 33, 251-257 (2000) · Zbl 0992.76060
[18] Chinesta, F.; Poitou, A.; Torres, R., A semi-Lagrangian strategy to predict the fiber orientation in the steady flows of reinforced thermoplastics, Comput. Methods Appl. Mech. Eng., 189, 233-247 (2000) · Zbl 0976.74079
[19] Pironneau, O., Finite Element Methods for Fluids (1989), John Wiley & Sons: John Wiley & Sons Masson · Zbl 0665.73059
[20] Erwing, R. E.; Wang, H., A summary of numerical methods for time-dependent advection-dominated partial differential equations, J. Comput. Appl. Math., 128, 423-445 (2001) · Zbl 0983.65098
[21] Chinesta, F.; Chaidron, G., On the steady solution of linear advection problems in steady recirculating flows, J. Non-Newtonian Fluid Mech., 98, 65-80 (2001) · Zbl 0973.76004
[22] Chaidron, G.; Chinesta, F., On the steady solution of non-linear advection equations in steady recirculating flows, Comput. Methods Appl. Mech. Eng., 191, 1159-1172 (2002) · Zbl 0997.76008
[23] Walters, K., Overview of macroscopic viscoelastic flows, Viscoelast. Rheol., 47-79 (1985) · Zbl 0602.76007
[24] Evans, R. E.; Walters, K., Further remarks on the lip-vortex mechanism of vortex enhancement in planar-contraction flows, J. Non-Newtonian Fluid Mech., 32, 95-105 (1989)
[25] Townsend, P.; Walters, K., Expansion flows of non-Newtonians liquids, Chem. Eng. Sci., 49, 5, 749-763 (1993)
[26] Lipscomb, G. G.; Denn, M. M.; Hur, D. U.; Boger, D. V., The flow of fiber suspensions in complex geometries, J. Non-Newtonian Fluid Mech., 26, 297-325 (1988)
[27] Chinesta, F.; Poitou, A.; Torres, R., Numerical prediction of the fiber orientation in steady flows, Rev. Eur. Eléments Finis, 8, 4, 355-374 (1999) · Zbl 0972.76055
[28] Halin, P.; Lielens, G.; Keunings, R.; Legat, V., The Lagrangian particle method for macroscopic and micro-macro viscoelastic flow computations, J. Non-Newtonian Fluid Mech., 79, 387-403 (1998) · Zbl 0957.76066
[29] Gallez, X.; Halin, P.; Lielens, G.; Keunings, R.; Legat, V., The adaptative Lagrangian particle method for macroscopic and micro-macro computations of time-dependent viscoelastic flows, Comput. Methods Appl. Mech. Eng., 180, 345-364 (1999) · Zbl 0966.76076
[30] Wapperom, P.; Keunings, R.; Legat, V., The backward-tracking Lagrangian particle method for transient viscoelastic flows, computations, J. Non-Newtonian Fluid Mech., 81, 2-3, 273-295 (2000) · Zbl 0972.76081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.