×

Numerical solution of the fractional Euler-Lagrange’s equations of a thin elastica model. (English) Zbl 1431.74020

Summary: In this manuscript, we investigated the fractional thin elastic system. We studied the obtained fractional Euler-Lagrange’s equations of the system numerically. The numerical study is based on Grünwald-Letnikov approach, which is power series expansion of the generating function. We present an illustrative example of the proposed numerical model of the system.

MSC:

74B20 Nonlinear elasticity
65L12 Finite difference and finite volume methods for ordinary differential equations
34A08 Fractional ordinary differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations

Software:

ma2dfc
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974) · Zbl 0292.26011
[2] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam (1993) · Zbl 0818.26003
[3] Machado, J.A.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. 16, 1140-1153 (2011) · Zbl 1221.26002 · doi:10.1016/j.cnsns.2010.05.027
[4] Li, C., Chen, Y.Q., Kurths, J.: Fractional calculus and its applications. Philos. Trans. R. Soc. A. 371, 20130037 (2013) · Zbl 1338.00072 · doi:10.1098/rsta.2013.0037
[5] Debnath, L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 54, 3413-3442 (2003) · Zbl 1036.26004 · doi:10.1155/S0161171203301486
[6] Montgomery-Smith, S., Huang, W.: A numerical method to model dynamic behavior of thin inextensible elastic rods in three dimensions. J. Comput. Nonlinear Dyn. 9(1), 011015 (2014)
[7] David, S.A., Linares, J.L., Pallone, E.M.J.A.: Fractional order calculus: historical apologia, basic concepts and some applications. Rev. Bras. Ensino Fis. 33(4), 4302 (2011) · doi:10.1590/S1806-11172011000400002
[8] Kilbas, A.A., Srivastava, H.M., Trujiilo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) · Zbl 1092.45003
[9] Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993) · Zbl 0789.26002
[10] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) · Zbl 0924.34008
[11] Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890-1899 (1996) · doi:10.1103/PhysRevE.53.1890
[12] Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581-3592 (1997) · doi:10.1103/PhysRevE.55.3581
[13] Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368-379 (2002) · Zbl 1070.49013 · doi:10.1016/S0022-247X(02)00180-4
[14] Klimek, M.: Fractional sequential mechanics—models with symmetric fractional derivative. Czechoslov. J. Phys. 51(12), 1348-1354 (2001) · Zbl 1064.70507 · doi:10.1023/A:1013378221617
[15] Baleanu, D., Avkar, T.: Lagrangians with linear velocities within Riemann-Liouville fractional derivatives. Nuovo Cimento, B 119, 73-79 (2004)
[16] Klimek, M.: On Solutions of Linear Fractional Differential Equations of a Variational Type. Czestochowa University of Technology, Czestochowa (2009)
[17] Diethelm, K., Ford, N.J.: Numerical solution of the Bagley-Torvik equation. BIT Numer. Math. 42(3), 490 (2002) · Zbl 1035.65067
[18] Ray, S.S., Bera, R.K.: Analytical solution of the Bagley Torvik equation by Adomian decomposition method. Appl. Math. Comput. 168(1), 398 (2005) · Zbl 1109.65072 · doi:10.1016/j.amc.2004.09.006
[19] Momani, S., Al-Khaled, K.: Numerical solutions for systems of fractional differential equations by the decomposition method. Appl. Math. Comput. 162(3), 1351 (2005) · Zbl 1063.65055 · doi:10.1016/j.amc.2004.03.014
[20] Podlubny, I.: Matrix approach to discrete fractional calculus. Fract. Calc. Appl. Anal. 3(4), 359 (2010) · Zbl 1030.26011
[21] Podlubny, I., Chechkin, A.V., Skovranek, T., Chen, Y.Q., Vinagre, B.: Matrix approach to discrete fractional calculus II: partial fractional differential equations. J. Comput. Phys. 228(8), 3137 (2009) · Zbl 1160.65308 · doi:10.1016/j.jcp.2009.01.014
[22] Baleanu, D., Petras, I., Asad, J.H., Pilar, M.: Velasco, fractional Pais-Uhlenbeck oscillator. Int. J. Theor. Phys. 51(4), 1253-1258 (2012) · Zbl 1284.70035 · doi:10.1007/s10773-011-1000-y
[23] Baleanu, D., Asad, J.H., Petras, I.: Fractional- order two- electric pendulum. Rom. Rep. Phys. 64(4), 907-914 (2012)
[24] Baleanu, D., Asad, J.H., Petras, I., Elagan, S., Bilgen, A.: Fractional Euler-Lagrange equation of Caldirola-Kanai oscillator. Rom. Rep. Phys. 64, 1171-1177 (2012)
[25] Baleanu, D., Asad, J.H., Petras, I.: Fractional Bateman-Feshbach Tikochinsky oscillator. Commun. Theo. Phys. 61(2), 221-225 (2014) · doi:10.1088/0253-6102/61/2/13
[26] Euler, L.: Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sivesolutio problematis isoperimetrici lattissimo sensu accepti, chapter Additamentum 1. eulerarchive.org, E065 (1744) · Zbl 0788.01072
[27] Levien, R.: The elastica: a mathematical history (2008). http://levien.com/phd/elastica_hist.pdf
[28] Burden, R.L., Faires, J.D.: Numerical Analysis, 3rd edn. Prindle, Weber and Schmidt, Belmont, Boston (1985) · Zbl 0788.65001
[29] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, New York (2000) · Zbl 0957.65001
[30] Huang, W.: Numerical Recipes in C. University Press, Cambridge (2002) · Zbl 1078.65500
[31] Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods. SIAM, Philadelphia (2003) · Zbl 1036.65047 · doi:10.1137/1.9780898719154
[32] Santillan, S.A.: Analysis of the Elastica with Applications to Vibration Isolation. In: Ph.D. Thesis, Duke University (2007). http://dukespace.lib.duke.edu/dspace/handle/10161/180
[33] Cusumano, J.P.: Low-dimensional, Chaotic, Non-planar Motions of the Elastic. In: Ph.D. Thesis, Cornell University, NY (1990)
[34] Pak, C.H., Rand, R.H., Moon, F.C.: Free vibrations of a thin elastica by normal modes. Nonlinear Dyn. 3, 347-364 (1992) · doi:10.1007/BF00045071
[35] Rabei, E.M., Nawafleh, K.I., Hijjawi, R.S., Muslih, S.I., Baleanu, D.: The Hamilton formalism with fractional derivatives. J. Math. Appl. Anal. 327, 891-897 (2007) · Zbl 1104.70012 · doi:10.1016/j.jmaa.2006.04.076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.