×

The structure of Hilbert flag varieties. (English) Zbl 0836.22029

Let \(H\) be a complex Hilbert space. If \(H\) is finite dimensional, then it is a classical result that the finite dimensional irreducible representations of the general linear group \(GL(H)\) can be realized geometrically as the natural action of the group \(GL(H)\) on the space of global holomorphic sections of a holomorphic line bundle over a space of flags in \(H\). By choosing a basis of \(H\), one can identify this space of holomorphic sections with a space of holomorphic functions on \(GL(H)\) that are certain polynomial expressions in minors of the matrices corresponding to the elements of \(GL(H)\). Infinite dimensional analogues of some of these representations occur in quantum field theory, infinite dimensional Grassmann manifolds play an important role in the framework of integrable systems. The first person to realize this was Sato. In the paper under review the authors give an infinite dimensional analogue of all these representations. In a separable Hilbert space \(H\) they consider a collection of flags that generalizes the Grassmannian from A. Pressley’s and G. Segal’s book [Loop groups, Oxford: Clarendon Press (1986; Zbl 0618.22011)]. This flag variety carries a natural Hilbert space structure and there exist line bundles over it that are similar to the finite dimensional ones. This includes the determinant bundle and its dual form. In the “dominant” case the space of global holomorphic sections of such a line bundle turns out to be non-trivial. However, the action of the analogue of the general linear group can, in general, not be lifted to the line bundle under consideration and one has to pass to a central extension of this group. The paper under review consists of three sections. In the first section the authors give the definition of the flag variety and treat some properties of the flag variety. The second section is devoted to the construction of the holomorphic line bundles, to a description of the corresponding central extensions and to the analysis of the space of global holomorphic sections. As an application they show in the final section what role geometry plays in the context of some integrable systems.

MSC:

22E65 Infinite-dimensional Lie groups and their Lie algebras: general properties
14M15 Grassmannians, Schubert varieties, flag manifolds
35Q58 Other completely integrable PDE (MSC2000)
43A80 Analysis on other specific Lie groups
17B65 Infinite-dimensional Lie (super)algebras

Citations:

Zbl 0618.22011
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bergvelt, M. J. and Kroode, A. P. E. ten, Differential-difference AKNS equations and homogeneous Heisenberg algebras, /. Math. Phys., 28 (1987), 302. · Zbl 0663.35065 · doi:10.1063/1.527658
[2] Boyer, R. P., Representation Theory of the Hilbert-Lie Group C/(§)2, Duke Math. /., 47, No. 2, p. 325-344. · Zbl 0462.22009 · doi:10.1215/S0012-7094-80-04720-1
[3] Bourbaki, N., Lie groups and Lie algebras, Chapters 1-3, Springer-Verlag, New York/ Berlin, 1989. · Zbl 0672.22001
[4] , Varietes differentielles et analytiques, Hermann, Paris, 1968.
[5] Carey, A. L. and Ruijsenaars. S. N. M, On fermion gauge groups, current algebras and Kac-Moody algebras, Acta Appl. Math., 10 (1987), 1-86. · Zbl 0644.22012 · doi:10.1007/BF00046582
[6] Carey, A. L., Hurst, C. A. and O’Brien, D. M., Automorphisms of the canonical anticom- mutation relations and index theory, /. Fund. Anal., 48 (1982), 360-393. · Zbl 0498.46051 · doi:10.1016/0022-1236(82)90092-1
[7] Date, E., Jimbo, M., Kashiwara, M. and Miwa, T., Transformation groups for soliton equations, Proc. Japan Acad., 57A (1981), 342-7. · Zbl 0571.35098
[8] Dorfmeister. J. and Neher, E., Banach Jordan pairs and Associated Groups and Manifolds, in preparation. · Zbl 0507.53039
[9] Dorfmeister, J., Neher, E. and Szmigielski, J., Automorphisms of Banach Manifolds associated with the KP-equation, Quart. J. Math. Oxford, 40 (1989), 161-195. · Zbl 0686.58007 · doi:10.1093/qmath/40.2.161
[10] Fallings, G., Stable G-bundles and projective connections, /. Algebraic. Geom., 2 (1993), 507-568. · Zbl 0790.14019
[11] Grothendieck, A., Sur la classification des fibres holomorphes sur la sphere de Riemann, Am. J. Math., 79 (1957), 121-38. · Zbl 0079.17001 · doi:10.2307/2372388
[12] , La theorie de Fredholm, Bull. Soc. Math. France, 84 (1956), 319-384.
[13] Helminck, G. F. and Post, G. F., The geometry of differential difference equations, Memorandum 999, University of Twente (1991), to appear in Indag. Math. · Zbl 0816.35123 · doi:10.1016/0019-3577(94)90016-7
[14] , A convergent framework for the multicomponent KP-hierarchy, Trans. Am. Math. Soc., 324, (1991). · Zbl 0737.35098 · doi:10.2307/2001507
[15] , Geometric interpretation of the bilinear equations for the KP-hierarchy, Lett. Math. Phys., 16 (1988), 359-364. · Zbl 0672.58047 · doi:10.1007/BF00402044
[16] Herve, M., Analytic and plurisubharmonic functions in finite and infinite dimensional spaces, Lecture Notes in Math., 198 Springer Verlag, Berlin (1971). · Zbl 0214.36404
[17] Jimbo, M. and Miwa, T., Solitons and infinite dimensional Lie algebras, Pitbl. RIMS, Kyoto Univ., 19 (1983), 943-1001. · Zbl 0557.35091 · doi:10.2977/prims/1195182017
[18] Kac, V. G., Infinite dimensional Lie algebras, Birkhauser, Boston, 1983. · Zbl 0537.17001
[19] Kashiwara, M., The flag manifold of Kac-Moody Lie algebra, to appear. · Zbl 0764.17019
[20] Kuiper, N. H., The homotopy type of the unitary group of Hilbert space, Topology, 3 (1965), 19-30. · Zbl 0129.38901 · doi:10.1016/0040-9383(65)90067-4
[21] Mickelsson, J., Current algebras and groups, Plenum monographs in nonlinear physics. [22] Peterson, D. H. and Kac, V. G., Infinite flag varieties and conjugacy theorems, Proc. Nat. Acad. Sd. USA, 80 (1983), 1778-1782.
[22] Pressley, A. and Segal, G., Loop groups, Clarendon Press, Oxford, 1986. · Zbl 0618.22011
[23] Sato, M. and Sato, Y., Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, Lect. Notes in Num. Appl. Anal., 5 (1982), 259. · Zbl 0528.58020
[24] Segal, G. B. and Wilson, G., Loop groups and equations of KdV-type, Inst. Hautes Etudes Sci. Publ. Math., 61 (1985), 5-65. · Zbl 0592.35112 · doi:10.1007/BF02698802
[25] Shale, D., Linear symmetries of free Boson fields, Trans. Amer. Math. Soc., 103 (1962), 149-167. · Zbl 0171.46901 · doi:10.2307/1993745
[26] Ueno, K. and Takasaki, K., Toda-lattice hierarchy, Adv. Stud. Pure Math., North-Holland. 4 (1984), 1-95. · Zbl 0577.58020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.