×

Exploration of dilatant nanofluid effects conveying microorganism utilizing scaling group analysis: FDM blottner. (English) Zbl 07572667

Summary: Biological transport in nanofluid is an essential new focus in fluid dynamics since the suspensions of microorganisms and nanoparticles proved to enhance the thermal conductivity of the fluid, which benefits many industrial applications for instances, biofuel cells and bio-microfluidics devices. In this regard, the present work is dedicated to investigating the effects of magnetohydrodynamics (MHD) and chemical reaction in the boundary layer flow, heat, mass and living microorganism transfer past a permeable stretching surface in a dilatant nanofluid. At the surface of the stretching sheet, there are multiple kinds of slips which affect the mechanisms within the vicinity of the boundary layer. The scaling group analysis has been performed to produce the appropriate similarity solution specifically for the present model. The governing boundary layer model in the form of the partial differential equations are reduced to a system of ordinary differential equations via similarity solutions to ease the computational process. The transformed mathematical model is then solved numerically via the Blottner’s finite difference method (FDM). The presences of the velocity slip at the surface of the stretching sheet decelerated the fluid flow.

MSC:

82-XX Statistical mechanics, structure of matter
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Itoh, A., Motion control of protozoa by the electric field, J. JSME, 65, 1078-1084 (1999)
[2] A. Itoh, H. Toida, Control of bioconvection and its mechanical application, in: IEEE/ASME International Conference on Advanced Intelligent Mechatronics Proceedings, 8-12 July 2001, Como, Italy, 2001.
[3] Siddiqa, S.; Begum, N.; Saleem, S.; Hossain, M. A.; Gorla, R. S.R., Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone, Int. J. Heat Mass Transfer, 101, 608-613 (2016)
[4] Hill, N. A.; Pedley, T. J., Bioconvection, Fluid Dyn. Res., 37, 1-20 (2005) · Zbl 1153.76455
[5] Pedley, T. J.; Kessler, J. O., The orientation of spheroidal microorganisms swimming in a flow field, Proc. R. Soc. Lond. [Biol.], 231, 47-70 (1987)
[6] Pedley, T. J.; Hill, N. A.; Kessler, J. O., The growth of bioconvection patterns in a uniform suspension of gyrotactic microorganisms, J. Fluid Mech., 195, 223-237 (1988) · Zbl 0653.76083
[7] Kessler, J. O., Hydrodynamic focusing of motile algal cells, Nature, 313, 218-220 (1985)
[8] Kessler, J. O., Co-operative and concentrative phenomena of swimming microorganisms, Contemp. Phys., 10, 202-210 (1985)
[9] Hill, N. A.; Pedley, T. J.; Kessler, J. O., Growth of bioconvection patterns in a suspension of gyrotactic microorganisms in a layer of finite depth, J. Fluid Mech., 208, 509-543 (1989) · Zbl 0686.76053
[10] Ghorai, S.; Hill, N. A., Development and stability of gyrotactic plumes in bioconvection, J. Fluid Mech., 400, 1-31 (1999) · Zbl 0972.76116
[11] Ghorai, S.; Hill, N. A., Wavelengths of gyrotactic plumes in bioconvection, Bull. Math. Biol., 62, 429-450 (2000) · Zbl 1323.76134
[12] Ghorai, S.; Hill, N. A., Gyrotactic bioconvection in three dimensions, Phys. Fluids, 19, 1-10 (2007) · Zbl 1146.76391
[13] Hillesdon, A. J.; Pedley, T. J., Bioconvection in suspensions of oxytactic bacteria: Linear theory, J. Fluid Mech., 324, 223-259 (1996) · Zbl 0882.92004
[14] Hopkins, M. M.; Fauci, L. J., A computational model of the collective fluid dynamics of motile micro-organisms, J. Fluid Mech., 455, 149-174 (2002) · Zbl 1052.76077
[15] Kuznetsov, A. V., The onset of bioconvection in a suspension of gyrotactic microorganisms in a fluid layer of finite depth heated from below, Int. Commun. Heat Mass, 32, 574-582 (2005)
[16] Zeng, L.; Pedley, T. J., Distribution of gyrotactic micro-organisms in complex three dimensional flows. Part 1. Horizontal shear flow past a vertical circular cylinder, J. Fluid Mech., 852, 358-397 (2018) · Zbl 1415.76783
[17] Pop, I.; Naganthran, K.; Nazar, R., Numerical solutions of non-alignment stagnation-point flow and heat transfer over a stretching/shrinking surface in a nanofluid, Int. J. Numer. Methods Heat Fluid Flow, 26, 1747-1767 (2016) · Zbl 1356.76401
[18] Choi, S. U.S.; Eastman, J. A., Enhancing thermal conductivity of fluids with nanoparticles, ASME Publ. Fed., 231, 99-106 (1995)
[19] Wong, K. V.; Leon, O. D., Applications of nanofluids: current and future, Adv. Mech. Eng., 2010, 1-11 (2010)
[20] Buongiorno, J., Convective transport in nanofluids, J. Heat Trans-T ASME, 128, 240-250 (2006)
[21] Pop, I.; Naganthran, K.; Nazar, R.; Ishak, A., The effect of vertical throughflow on the boundary layer flow of a nanofluid past a stretching/shrinking sheet: A revised model, Int. J. Numer. Methods Heat Fluid Flow, 27, 1910-1927 (2017)
[22] Jusoh, R.; Nazar, R.; Pop, I., Magnetohydrodynamic boundary layer flow and heat transfer of nanofluids past a bidirectional exponential permeable stretching/shrinking sheet with viscous dissipation effect, J. Heat Trans-T ASME., 141, Article 012406 pp. (2019)
[23] Salleh, S. N.A.; Bachok, N.; Arifin, N. M.; Ali, F. M., Numerical analysis of boundary layer flow adjacent to a thin needle in nanofluid with the presence of heat source and chemical reaction, Symmetry, 11, 1-15 (2019) · Zbl 1425.76296
[24] Mahian, O.; Kolsi, L.; Amani, M.; Estellé, P.; Ahmadi, G.; Kleinstreuer, C.; Marshall, J. S., Recent advances in modeling and simulation of nanofluid flows-part I: Fundamental and theory, Phys. Rep., 790, 1-48 (2019)
[25] Mahian, O.; Kolsi, L.; Amani, M.; Estellé, P.; Ahmadi, G.; Kleinstreuer, C.; Marshall, J. S., Recent advances in modeling and simulation of nanofluid flows-part II: Applications, Phys. Rep., 791, 1-59 (2019)
[26] Sakiadis, B. C., Boundary-layer behavior on continuous solid surfaces: I, Boundary-layer equations for two-dimensional and axisymmetric flow, AIChE J., 7, 26-28 (1961)
[27] Sakiadis, B. C., Boundary-layer behavior on continuous solid surfaces: II, The boundary layer on a continuous flat surface, AIChE J., 7, 221-225 (1961)
[28] Crane, L. J., Flow past a stretching plate, Z. Angew. Math. Phys., 21, 645-647 (1970)
[29] Carragher, P.; Crane, L. J., Heat transfer on a continuous stretching sheet, Z. Angew. Math. Phys., 62, 564-565 (1982)
[30] Naganthran, K.; Nazar, R.; Pop, I., A study on non-Newtonian transport phenomena in a mixed convection stagnation point flow with numerical simulation and stability analysis, Eur. Phys. J. Plus, 134, 1-14 (2019)
[31] Jamaludin, A.; Nazar, R.; Pop, Ioan, Mixed convection stagnation-point flow of a nanofluid past a permeable stretching/shrinking sheet in the presence of thermal radiation and heat source/sink, Energies, 12, 1-20 (2019)
[32] Nadeem, S.; Khan, A. U., MHD oblique stagnation point flow of nanofluid over an oscillatory stretching/shrinking sheet: Existence of dual solutions, Phys. Scr., 94, Article 075204 pp. (2019)
[33] Roşca, N. C.; Roşca, A. V.; Pop, I.; Merkin, J. H., Nanofluid flow by a permeable stretching/shrinking cylinder, Heat Mass Transfer, 1-11 (2019)
[34] Kuznetsov, A. V., The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms, Int. Commun. Heat Mass, 37, 1421-1425 (2010)
[35] Zaimi, K.; Ishak, A.; Pop, I., Stagnation-point flow toward a stretching/shrinking sheet in a nanofluid containing both nanoparticles and gyrotactic microorganisms, J. Heat Transfer, 136, 1-9 (2014)
[36] Khan, W. A.; Makinde, O. D., MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet, Int. J. Therm. Sci., 81, 118-124 (2014)
[37] Naganthran, K.; Basir, M. F.M.; Alharbi, S. O.; Nazar, R.; Alwatban, A. M.; Tlili, I., Stagnation point flow with time-dependent bionanofluid past a sheet: Richardson extrapolation technique, Processes, 7, 1-14 (2019)
[38] Passchier, C., The classification of dilatant flow types, J. Struct. Geol., 13, 101-104 (1991)
[39] Maleki, H.; Safaei, M. R.; Alrashed, A. A.A.; Kasaeian, A., Flow and heat transfer in non-Newtonian nanofluids over porous surfaces, J. Therm. Anal. Calorim., 135, 1655-1666 (2019)
[40] Akgül, M.; Pakdemirli, M., Lie group analysis of a non-Newtonian fluid flow over a porous surface, Sci. Iran, 19, 1534-1540 (2012)
[41] Jalil, M.; Asghar, S., Flow of power-law fluid over a stretching surface: A Lie group analysis, Int. J. Non-Linear Mech., 48, 65-71 (2013)
[42] Jalil, M.; Asghar, S.; Imran, S. M., Self similar solutions for the flow and heat transfer of Powell-Eyring fluid over a moving surface in a parallel free stream, Int. J. Heat Mass Transfer, 65, 73-79 (2013)
[43] Cao, L.; Si, X.; Zheng, L., The flow of a micropolar fluid through a porous expanding channel: A Lie group analysis, Appl. Math. Comput., 270, 242-250 (2015) · Zbl 1410.76452
[44] Si, X.; Yuan, L.; Zheng, L.; Shen, Y.; Cao, L., Lie group method for the modified model of MHD flow and heat transfer of a non-Newtonian fluid with prescribed heat flux over a moving porous plate, J. Mol. Liq., 220, 768-777 (2016)
[45] Uddin, M.; Ferdows, M.; Bég, O. A., Group analysis and numerical computation of magneto-convective non-Newtonian nanofluid slip flow from a permeable stretching sheet, Appl. Nanosci., 4, 897-910 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.