×

Front propagation into unstable states. (English) Zbl 1042.74029

Summary: This paper is an introductory review of the problem of front propagation into unstable states. Our presentation is centered around the concept of the asymptotic linear spreading velocity \(v^*\), the asymptotic rate with which initially localized perturbations spread into an unstable state according to the linear dynamical equations obtained by linearizing the fully nonlinear equations about the unstable state. This allows us to give a precise definition of pulled fronts, nonlinear fronts whose asymptotic propagation speed equals \(v^*\), and pushed fronts, nonlinear fronts whose asymptotic speed \(v^{\dagger}\) is larger than \(v^*\). In addition, this approach allows us to clarify many aspects of the front selection problem, the question whether for a given dynamical equation the front is pulled or pushed. It also is the basis for the universal expressions for the power law rate of approach of the transient velocity \(v(t)\) of a pulled front as it converges toward its asymptotic value \(v^*\). Almost half of the paper is devoted to reviewing many experimental and theoretical examples of front propagation into unstable states from this unified perspective. The paper also includes short sections on the derivation of the universal power law relaxation behavior of \(v(t)\), on the absence of a moving boundary approximation for pulled fronts, on the relation between so-called global modes and front propagation, and on stochastic fronts.

MSC:

74J30 Nonlinear waves in solid mechanics
74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics

Software:

MACSYMA
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abel, M.; Celani, A.; Vergni, D.; Vulpiani, A., Front propagation in laminar flows, Phys. Rev. E, 64, 046307 (2001)
[2] Abel, M.; Cencini, M.; Vergni, D.; Vulpiani, A., Front speed enhancement in cellular flows, Chaos, 12, 481 (2002) · Zbl 1080.80501
[3] Abramson, G.; Kenkre, V. M.; Yates, T. L.; Parmenter, R. R., Traveling waves of infection in the Hantavirus epidemics, Bull. Math. Biol., 65, 519 (2003) · Zbl 1334.92386
[4] Ahlers, G.; Cannell, D. S., Vortex front propagation in rotating Couette-Taylor flow, Phys. Rev. Lett., 50, 1583 (1983)
[5] Albarède, P.; Provansal, M., Quasi-periodic cylinder wakes and the Ginzburg-Landau model, J. Fluid. Mech., 291, 191 (1995) · Zbl 0850.76152
[6] Allen, S. M.; Cahn, J. W., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27, 1085 (1979)
[7] Anisimov, M. A.; Voronov, V. P.; Gorodetskii, E. E.; Prodneks, V. E.; Kholmodorov, F. F., Observation of the Halperin-Lubensky-Ma effect in a liquid crystal, Pis’ma Zh. Exp. Teor. Fiz., 45, 336 (1987), [JETP Lett. 45 (1987) 425]
[8] Anisimov, M. A.; Cladis, P. E.; Gorodetskii, E. E.; Huse, D. A.; Podneks, V. E.; Taratuta, V. G.; van Saarloos, W.; Voronov, V. P., Experimental test of fluctuation induced first order transitionthe Nematic-Smectic a transition, Phys. Rev. A, 41, 6749 (1990)
[9] Aranson, I. S.; Kramer, L., The world of the complex Ginzburg-Landau equation, Rev. Mod. Phys., 74, 99 (2002) · Zbl 1205.35299
[10] Armero, J.; Sancho, J. M.; Casademunt, J.; Lacasta, A. M.; Ramirez-Piscina, L.; Sagues, F., External fluctuations in front propagation, Phys. Rev. Lett., 76, 3045 (1996)
[11] Armero, J.; Casademunt, J.; Ramirez-Piscina, L.; Sancho, J. M., Ballistic and diffusive corrections to front propagation in the presence of multiplicative noise, Phys. Rev. E, 58, 5494 (1998)
[12] Arnold, L., Stochastic Differential Equations: Theory and Applications (1974), Wiley: Wiley New York
[13] Arnold, V. I., Ordinary Differential Equations (1978), MIT Press: MIT Press Cambridge
[14] Arnold, V. I., Geometrical Methods in the Theory of Ordinary Differential Equations (1983), Springer: Springer New York · Zbl 0507.34003
[15] Aronson, D. G.; Weinberger, H. F., Nonlinear diffusion in population genetics, combustion, and nerve propagation, (Goldstein, J. A., Partial Differential Equations and Related Topics (1975), Springer: Springer Heidelberg) · Zbl 0325.35050
[16] Aronson, D. G.; Weinberger, H. F., Multidimensional nonlinear diffusion arising in population dynamics, Adv. Math., 30, 33 (1978) · Zbl 0407.92014
[17] Aronson, D. G., The porous medium equation, (Fasano, A.; Primicario, M., Nonlinear Diffusion Problems (1986), Springer: Springer Berlin) · Zbl 0626.76097
[18] Arrayás, M.; Ebert, U.; Hundsdorfer, W., Spontaneous branching of anode-directed streamers between planar electrodes, Phys. Rev. Lett., 88, 174502 (2002)
[19] Babcock, K. L.; Ahlers, G.; Cannell, D. S., Noise-sustained structure in Taylor-Couettee flow with through flow, Phys. Rev. Lett., 67, 3388 (1991)
[20] Babcock, K. L.; Ahlers, G.; Cannell, D. S., Stability and noise in Taylor-Couette with through-flow, Physica, D 61, 40 (1992) · Zbl 0800.76134
[21] Ball, R. C.; Essery, R. L.H., Spinodal decomposition and pattern formation near surfaces, J. Phys.: Condens. Matter, 2, 10303 (1990)
[22] Barabási, A.-L.; Stanley, H. E., Fractal Concepts in Surface Growth (1995), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0838.58023
[23] Barber, M. N.; Barbieri, A.; Langer, J. S., Dynamics of dendritic sidebranching in the two-dimensional symmetric model of solidification, Phys. Rev. A, 36, 3340 (1987)
[24] Barenblatt, G. I., Similarity, Self-Similarity and Intermediate Asymptotics (1979), Consultants Bureau: Consultants Bureau New York · Zbl 0467.76005
[25] Barenblatt, G. I., Scaling, Self-Similarity and Intermediate Asymptotics (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0907.76002
[26] Bar-Ziv, R.; Moses, E., Instability and pearling states produced in tubular membranes by competition of curvature and tension, Phys. Rev. Lett., 73, 1392 (1994)
[27] Bar-Ziv, R.; Tlusty, T.; Moses, E., Critical dynamics in the pearling instability of membranes, Phys. Rev. Lett., 79, 1158 (1997)
[28] Bassom, A. P.; Kuanyan, K. M.; Soward, A. M., A nonlinear dynamo wave riding on a spatially varying background, Proc. R. Soc. London A, 455, 1443 (1999) · Zbl 0961.76090
[29] Bates, P. W.; Fife, P. C.; Gardner, R. A.; Jones, C. K.R. T., Phase field models for hypercooled solidification, Physica D, 104, 1 (1997) · Zbl 0890.35161
[30] Ben Amar, M., Plumes in Hele-Shaw cells, Phys. Fluids A, 4, 2641 (1992) · Zbl 0762.76022
[31] ben-Avraham, D., Fisher waves in the diffusion-limited coalescence process A+A ⇌ A, Phys. Lett. A, 247, 53 (1998)
[32] Bender, C. M.; Orszag, S. A., Advanced Mathematical Methods for Scientists and Engineers (1978), McGraw-Hill: McGraw-Hill New York · Zbl 0417.34001
[33] Benguria, R. D.; Depassier, M. C., Validity of the linear speed selection mechanism for fronts of the nonlinear diffusion equation, Phys. Rev. Lett., 73, 2272 (1994) · Zbl 0807.34045
[34] Benguria, R. D.; Depassier, M. C., Exact fronts for the nonlinear diffusion equation with quintic nonlinearities, Phys. Rev. E, 50, 3701 (1994) · Zbl 0807.34045
[35] Benguria, R. D.; Depassier, M. C., Speed of fronts of the reaction diffusion equation, Phys. Rev. Lett., 77, 1171 (1996) · Zbl 0856.35058
[36] Benguria, R. D.; Depassier, M. C., Variational characterization of the speed of propagation of fronts for the nonlinear diffusion equation, Commun. Math. Phys., 175, 221 (1996) · Zbl 0856.35058
[37] Benguria, R. D.; Depassier, M. C., Speed of fronts of generalized reaction-diffusion equations, Phys. Rev. E, 57, 6493 (1998) · Zbl 0946.34070
[38] Ben-Jacob, E.; Brand, H. R.; Dee, G.; Kramer, L.; Langer, J. S., Pattern propagation in non-linear dissipative systems, Physica D, 14, 348 (1985) · Zbl 0622.76051
[39] Ben-Jacob, E., From snowflake formation to growth of bacterial colonies. 1. Diffusive patterning in azoic systems, Contemp. Phys., 34, 247 (1993)
[40] Ben-Jacob, E., From snowflake formation to growth of bacterial colonies. 2. Cooperative formation of complex colonial patterns, Contemp. Phys., 38, 205 (1997)
[41] Ben-Jacob, E.; Cohen, I.; Levine, H., Cooperative self-organization of microorganisms, Adv. Phys., 49, 395 (2000)
[42] Bennema, P.; Gilmer, G. H., (Hartman, P., Crystal Growth: An Introduction (1973), North-Holland: North-Holland Amsterdam)
[43] Bensimon, D.; Shraiman, B.; Kadanoff, L. P., (Family, F.; Landau, D. P., Kinetics of Aggregation and Gelation (1984), Elsevier: Elsevier Amsterdam)
[44] Bensimon, D.; Kadanoff, L. P.; Liang, S.; Shraiman, B. I.; Tang, C., Viscous flow in two dimensions, Rev. Mod. Phys., 58, 977 (1986)
[45] Bensimon, D.; Pelcé, P.; Shraiman, B. I., Dynamics of curved fronts and pattern selection, J. Phys. (France), 48, 2081 (1987)
[46] Bensimon, D.; Shraiman, B. I.; Croquette, V., Nonadiabatic effects in convection, Phys. Rev. A, 38, 5461 (1988)
[47] H. Berestycki, Some nonlinear PDE’s in the theory of flame propagation, preprint.; H. Berestycki, Some nonlinear PDE’s in the theory of flame propagation, preprint. · Zbl 1043.76061
[48] Berestycki, H.; Hamel, F., Front propagation in periodic excitable media, Commun. Pure Appl. Math., 55, 949 (2002) · Zbl 1024.37054
[49] Bers, A. N., Space-time evolution of plasma instabilities—absolute and convective, (Rosenbluth, M. N.; Sagdeev, R. Z., Handbook of Plasma Physics (1983), North-Holland: North-Holland Amsterdam)
[50] Blatter, G.; Feigel’man, M. V.; Geshkenbein, V. B.; Larkin, A. I.; Vinokur, V. M., Vortics in high-temperature superconductors, Rev. Mod. Phys., 66, 1125 (1994)
[51] Bodenschatz, E.; Cannell, D. S.; Ecke, R.; Hu, Y.; Lerman, K.; Ahlers, G., Experiments on three systems with nonvariational aspects, Physica D, 61, 77 (1992) · Zbl 0800.76008
[52] Bohr, T.; Grinstein, G.; Jayaprakash, C.; Jensen, M. H.; Krug, J., Turbulence, power laws, and Galilean invariance, Physica, 59D, 177 (1992) · Zbl 0763.76039
[53] Booty, M. R.; Haberman, R.; Minzoni, A. A., The accommodation of traveling waves of Fisher’s type to the dynamics of the leading tail, SIAM J. Appl. Math., 53, 1009 (1993) · Zbl 0790.35043
[54] Bramson, M., Convergence of solutions of the Kolmogorov equation to traveling waves, Mem. Am. Math. Soc., 44, 285 (1983)
[55] Bramson, M.; Calderoni, P.; De Masi, A.; Ferrari, P. A.; Lebowitz, J. L.; Schonmann, R. H., Microscopic selection principle for a diffusion-reaction equation, J. Stat. Phys., 45, 905 (1986) · Zbl 0629.60108
[56] Bray, A. J., Theory of phase ordering kinetics, Adv. Phys., 43, 357 (1994)
[57] Brener, E. A.; Mel’nikov, V. I., Pattern selection in two-dimensional dendritic growth, Adv. Phys., 40, 53 (1991)
[58] Brener, E.; Levine, H.; Tu, Y., Mean-field theory for diffusion-limited aggregation in low dimensions, Phys. Rev. Lett., 66, 1978 (1991)
[59] Breuer, H.; Huber, W.; Petruccione, F., Fluctuation effects on wave propagation in a reaction-diffusion process, Physica D, 73, 259 (1994) · Zbl 0827.35057
[60] Bricmont, J.; Kupiainen, A., Renormalization group and the Ginzburg-Landau equation, Commun. Math. Phys., 150, 193 (1992) · Zbl 0765.35052
[61] Bricmont, J.; Kupiainen, A., Stability of moving fronts in the Ginzburg-Landau equation, Commun. Math. Phys., 159, 287 (1994) · Zbl 0808.35131
[62] Briggs, R. J., Electron-stream Interaction with Plasmas (1964), MIT Press: MIT Press Cambridge
[63] Britton, N. F., Reaction-diffusion Equations and their Applications to Biology (1986), Academic: Academic New York · Zbl 0602.92001
[64] Brunet, E.; Derrida, B., Shift of the velocity of a front due to a cutoff, Phys. Rev. E, 56, 2597 (1997)
[65] Brunet, E.; Derrida, B., Microscopic models of traveling wave equations, Comput. Phys. Commun., 122, 376 (1999)
[66] Brunet, E.; Derrida, B., Effect of microscopic noise on front propagation, J. Stat. Phys., 103, 269 (2001) · Zbl 1018.82020
[67] Buckmaster, J. D.; Lundford, G. S.S., Theory of Laminar Flames (1982), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0557.76001
[68] Büchel, P.; Lücke, M.; Roth, D.; Schmitz, R., Pattern selection in the absolutely unstable regime as a nonlinear eigenvalue problemTaylor vortices in axial flow, Phys. Rev. E, 53, 4764 (1996)
[69] Büchel, P.; Lucke, M., Pattern selection as a nonlinear eigenvalue problem, (Parisi, J.; Müller, S. C.; Zimmermann, W., Nonlinear Physics of Complex Systems (1996), Springer: Springer Berlin)
[70] Büchel, P.; Lücke, M., Localized perturbations in binary fluid convection with and without throughflow, Phys. Rev. E, 63, 016307 (2000)
[71] Caginalp, G.; Fife, P., Higher order phase field models and detailed anisotropy, Phys. Rev. B, 34, 4940 (1986)
[72] Canosa, J., On a nonlinear diffusion equation describing population growth, IBM J. Res. Dev., 17, 307 (1973) · Zbl 0266.65080
[73] B. Caroli, C. Caroli, B. Roulet, in: C. Godrèche (Ed.), Solids Far from Equilibrium, Cambridge University Press, Cambridge, 1992.; B. Caroli, C. Caroli, B. Roulet, in: C. Godrèche (Ed.), Solids Far from Equilibrium, Cambridge University Press, Cambridge, 1992.
[74] Carpentier, D.; Le Doussal, P., Disordered XY models and Coulomb gasesrenormalization via traveling waves, Phys. Rev. Lett., 81, 2558 (1998)
[75] D. Carpentier, P. Le Doussal, Topolocal transitions and freezing in XY models and Coulomb gases with quenched disorder: renormalization via traveling waves, Nucl. Phys. B 588 [FS] (2000) 565.; D. Carpentier, P. Le Doussal, Topolocal transitions and freezing in XY models and Coulomb gases with quenched disorder: renormalization via traveling waves, Nucl. Phys. B 588 [FS] (2000) 565. · Zbl 0979.82012
[76] Castets, V.; Dulos, E.; Boissonade, J.; De Kepper, P., Experimental evidence of a sustained standing turing-type nonequilibrium chemical pattern, Phys. Rev. Lett., 64, 2953 (1990)
[77] Cencini, M.; Torcini, A., Linear and nonlinear information flow in spatially extended systems, Phys. Rev. E, 63, 056201 (2001)
[78] Chandrasekhar, S., Hydrodynamics and Hydrodynamic Stability (1961), Clarendon Press: Clarendon Press Oxford · Zbl 0142.44103
[79] Chang, H.-C.; Demekhin, E. A.; Kopelevich, D. I., Stability of solitary pulse against wave packet disturbances in an active medium, Phys. Rev. Lett., 75, 1747 (1995)
[80] Chapman, S. J., Subcritical transition in channel flow, J. Fluid Mech., 451, 35 (2002) · Zbl 1037.76023
[81] Chaté, H., Spatiotemporal intermittency regimes of the one-dimensional complex Ginzburg-Landau equation, Nonlinearity, 7, 185 (1994) · Zbl 0839.76036
[82] Cisternas, J.; Depassier, M. C., Counterexample to a conjecture of Goriely for the speed of fronts of the reaction-diffusion equation, Phys. Rev. E, 55, 3701 (1997)
[83] Chen, L.-Y.; Goldenfeld, N.; Oono, Y.; Paquette, G., Selection, stability and renormalization, Physica A, 204, 111 (1994)
[84] Chomaz, J. M.; Huerre, P.; Redekopp, L. G., Bifurcations to local and global modes in spatially developing flows, Phys. Rev. Lett., 60, 25 (1988)
[85] Chomaz, J. M., Absolute and convective instabilities in nonlinear systems, Phys. Rev. Lett., 69, 1931 (1992) · Zbl 1050.76537
[86] Chomaz, J.-M.; Couairon, A., Propagating pattern selection and causality reconsidered, Phys. Rev. Lett., 84, 1910 (2000)
[87] Cladis, P. E.; van Saarloos, W.; Huse, D. A.; Patel, J. S.; Goodby, J. W.; Finn, P. L., A dynamical test of phase transition order, Phys. Rev. Lett., 62, 1764 (1989)
[88] Cladis, P.; van Saarloos, W., Some non-linear problems in anisotropic systems, (Lam, L., Solitons in Liquid Crystals (1991), Springer: Springer Berlin)
[89] Clarkson, P. A.; Mansfield, E. A., Symmetry reductions and exact-solutions of a class of nonlinear heat-equations, Physica D, 70, 250 (1993) · Zbl 0812.35017
[90] Clavin, P., Diffuse interfaces, (Wesfreid, J. E.; Brand, H. R.; Manneville, P.; Albinet, G.; Boccara, N., Propagation in Systems Far from Equilibrium (1988), Springer: Springer New York)
[91] Collet, P.; Eckmann, J. P., The stability of modulated fronts, Helv. Phys. Acta, 60, 969 (1987) · Zbl 0711.35062
[92] Collet, P.; Eckmann, J. P., Instabilities and Fronts in Extended Systems (1990), Princeton University Press: Princeton University Press Princeton · Zbl 0732.35074
[93] Collet, P.; Eckmann, J. P., A rigorous upper bound on the propagation speed for the Swift-Hohenberg and related equations, J. Stat. Phys., 108, 1107 (2002) · Zbl 1124.35322
[94] Conrado, C. V.; Bohr, T., Singular growth shapes in turbulent field theories, Phys. Rev. Lett., 72, 3522 (1994)
[95] Conte, R.; Musette, M., Linearity inside nonlinearity—exact-solutions to the complex Ginzburg Landau equation, Physica D, 69, 1 (1993) · Zbl 0791.35129
[96] Conte, R., Exact solutions of nonlinear partial differential equations by singularity analysis, (Greco, A., Direct and Inverse Methods in Nonlinear Evolution Equations (2002), Springer: Springer Berlin) · Zbl 1060.35001
[97] Coombs, D.; Huber, G.; Kessler, J. O.; Goldstein, R. E., Periodic chirality transformations propagating on bacterial flagella, Phys. Rev. Lett., 89, 118102 (2002)
[98] Couairon, A.; Chomaz, J. M., Pattern selection in the presence of cross flow, Phys. Rev. Lett., 79, 2666 (1997)
[99] Couairon, A.; Chomaz, J. M., Absolute and convective instabilities, front velocities and global mode in nonlinear systems, Physica D, 108, 236 (1997) · Zbl 0962.76525
[100] Couairon, A.; Chomaz, J. M., Primary and secondary nonlinear global instability, Physica D, 132, 428 (1999) · Zbl 0944.76025
[101] Couairon, A.; Chomaz, J. M., Pushed global modes in weakly inhomogeneous subcritical flows, Physica D, 158, 129 (2001) · Zbl 1049.76027
[102] Coullet, P.; Frisch, T.; Plaza, F., Sources and sinks of wave patterns, Physica D, 62, 75 (1993) · Zbl 0787.76008
[103] P. Coullet, L. Kramer, Retracting fronts induce spatio-temporal intermittency, Chaos (2003), to appear [nlin.PS/0202054].; P. Coullet, L. Kramer, Retracting fronts induce spatio-temporal intermittency, Chaos (2003), to appear [nlin.PS/0202054]. · Zbl 1080.37086
[104] Cross, M. C., Structure of nonlinear traveling-wave states in finite geometries, Phys. Rev. A, 38, 3593 (1988)
[105] Cross, M. C.; Hohenberg, P. C., Pattern formation outside of equilibrium, Rev. Mod. Phys., 65, 851 (1992) · Zbl 1371.37001
[106] Csahok, Z.; Misbah, C., On the invasion of an unstable structureless state by a stable hexagonal pattern, Europhys. Lett., 47, 331 (1999)
[107] A. Czirók, Bacterial colonies, in: T. Vicsek (Ed.), Fluctuations and Scaling in Biology, Oxford University Press, Oxford, 2001.; A. Czirók, Bacterial colonies, in: T. Vicsek (Ed.), Fluctuations and Scaling in Biology, Oxford University Press, Oxford, 2001.
[108] Dauchot, O.; Daviaud, F., Finite amplitude perturbation in plane Couette flow, Europhys. Lett., 28, 225 (1994)
[109] Daviaud, F.; Hegseth, J.; Bergé, P., Subcritical transition to turbulence in plane Couette flow, Phys. Rev. Lett., 69, 2511 (1992)
[110] Davies, P. W.; Blanchedeau, P.; Dulos, E.; De Kepper, P., Dividing blobs, chemical flowers, and patterned islands in reaction-diffusion systems, J. Phys. Chem. A, 102, 8236 (1998)
[111] Dee and J. S. Langer, G., Propagating pattern selection, Phys. Rev. Lett., 50, 383 (1983)
[112] Dee, G., Propagation into an unstable state, J. Stat. Phys., 39, 705 (1985)
[113] Dee, G.; van Saarloos, W., Bistable systems with propagating fronts leading to pattern formation, Phys. Rev. Lett., 60, 2641 (1988)
[114] de Gennes, P. G.; Prost, J., The Physics of Liquid Crystals (1993), Clarendon Press: Clarendon Press Oxford
[115] Deissler, R. J., Turbulent bursts, spots and slugs in a generalized Ginzburg-Landau equation, Phys. Lett. A, 120, 334 (1987)
[116] Deissler, R. J., The convective nature of instability in plane Poiseuille flow, Phys. Fluids, 30, 2303 (1987)
[117] Deissler, R. J., Spatially growing waves, intermittency, and convective chaos in an open-flow system, Physica D, 25, 233 (1987) · Zbl 0611.76061
[118] Deissler, R. J.; Kaneko, K., Velocity-dependent Lyapunov exponents as a measure of chaos for open-flow systems, Phys. Lett., 119, 397 (1987)
[119] Deissler, R. J., External noise and the origin of dynamics of structure in convectively unstable systems, J. Stat. Phys., 54, 1459 (1989)
[120] De Kepper, P.; Perraud, J. J.; Rudovic, B.; Dulos, E., Experimental study of stationary turing patterns and their interaction with traveling waves in a chemical system, Int. J. Bifurc. Chaos, 4, 1215 (1994) · Zbl 0877.92032
[121] De Masi, A.; Ferrari, P. A.; Lebowitz, J. L., Reaction diffusion equations for interacting particle systems, J. Stat. Phys., 44, 589 (1986) · Zbl 0629.60107
[122] Derrida, B.; Spohn, H., Polymers on disordered trees, spin glasses, and traveling waves, J. Stat. Phys., 51, 817 (1988) · Zbl 1036.82522
[123] Di Bartolo, S. J.; Dorsey, A. T., Velocity selection for propagating fronts in superconductors, Phys. Rev. Lett., 77, 4442 (1996)
[124] Diekmann, O., Run for your life: a note on the asymptotic speed of propagation of an epidemic, J. Differential Equations, 33, 58 (1979) · Zbl 0377.45007
[125] Di Prima, R. C.; Swinney, H. L., Instabilities and transition in flow between concentric rotating cylinders, (Swinney, H. L.; Gollub, J. P., Hydrodynamic Instabilities and the Transition to Turbulence (1981), Springer: Springer Berlin) · Zbl 0494.76048
[126] Doelman, A.; Sandstede, B.; Scheel, A.; Schneider, G., Propagation of hexagonal patterns near onset, Eur. J. Appl. Math., 14, 85 (2003) · Zbl 1044.37049
[127] Doering, C. R.; Burschka, M. A.; Horsthemke, W., Fluctuations and correlations in a diffusion-reaction system—exact hydrodynamics, J. Stat. Phys., 65, 953 (1991) · Zbl 0946.82516
[128] Doering, C. R., Microscopic spatial correlations induced by external noise in a reaction-diffusion system, Physica A, 188, 386 (1992)
[129] C.R. Doering, C. Mueller and P. Smereka, Noisy wavefront propagation in the Fisher-Kolmogorov-Petrovsky-Piscounov equation, in: Proceedings of the UPoN 2002 Conference, American Institute of Physics Press, New York, to appear.; C.R. Doering, C. Mueller and P. Smereka, Noisy wavefront propagation in the Fisher-Kolmogorov-Petrovsky-Piscounov equation, in: Proceedings of the UPoN 2002 Conference, American Institute of Physics Press, New York, to appear. · Zbl 1025.60027
[130] Doering, C. R.; Mueller, C.; Smereka, P., Interacting particles, the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation, and duality, Physica A, 325, 243 (2003) · Zbl 1025.60027
[131] Doelman, A. J.; Kaper, T. J.; Zegeling, P., Pattern formation in the one-dimensional Gray-Scott model, Nonlinearity, 10, 523 (1997) · Zbl 0905.35044
[132] Dorsey, A. T., Dynamics of interfaces in superconductors, Ann. Phys., 233, 248 (1994) · Zbl 0812.35133
[133] Dougherty, A.; Kaplan, P. D.; Gollub, J. P., Development of side branching in dendritic crystal growth, Phys. Rev. Lett., 58, 1652 (1987)
[134] Dougherty, A.; Gollub, J. P., Steady-state dendritic growth of \(NH_4Br\) from solution, Phys. Rev. A, 38, 3043 (1988)
[135] Drazin, P. G.; Reid, W. H., Hydrodynamic Stability (1981), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0449.76027
[136] Dubois, M.; Daviaud, F.; Ronsin, O.; Bergé, P., Traveling waves in pure fluids locally heated along wires, Physica D, 61, 140 (1992) · Zbl 0800.76012
[137] Durán, C. A.; Gammel, P. L.; Miller, R. E.; Bishop, D. J., Observation of magnetic-field penetration via dendritic growth in superconducting niobium films, Phys. Rev. B, 52, 75 (1995)
[138] Durrett, R., Maxima of branching random walks versus independent random walks, Stochastic Process. Appl., 9, 117 (1979) · Zbl 0425.60020
[139] Durrett, R., An infinite particle system with additive interactions, Adv. Appl. Probab., 11, 353 (1979)
[140] Eagles, P. M., Benard convection problem with a perturbed lower wall, Proc. R. Soc. London A, 371, 569 (1980) · Zbl 0466.76078
[141] Ebert, U.; van Saarloos, W.; Caroli, C., Streamer propagation as a pattern formation problem, Phys. Rev. Lett., 77, 4178 (1996)
[142] Ebert, U.; van Saarloos, W.; Caroli, C., Propagation and structure of planar streamer fronts, Phys. Rev. E, 55, 1530 (1997)
[143] Ebert, U.; van Saarloos, W., Universal algebraic relaxation of fronts propagating into unstable state and implications for moving boundary approximations, Phys. Rev. Lett., 80, 1650 (1998)
[144] Ebert W. van Saarloos, U., Front propagation into unstable statesuniversal algebraic convergence towards uniformly pulled fronts, Physica D, 146, 1 (2000) · Zbl 0984.35030
[145] Ebert, U.; van Saarloos, W., Breakdown of the standard perturbation theory and moving boundary approximation for “pulled” fronts, Phys. Rep., 337, 139 (2000) · Zbl 1058.37518
[146] Ebert, U.; van Saarloos, W.; Peletier, L. A., Universal algebraic convergence in time of pulled frontsthe common mechanism for difference-differential and partial differential equations, Eur. J. Appl. Math., 13, 53 (2002) · Zbl 1013.35081
[147] U. Ebert, W. Spruijt and W. van Saarloos, Physica D, submitted.; U. Ebert, W. Spruijt and W. van Saarloos, Physica D, submitted.
[148] Ecke, R. E.; Zhong, F.; Knobloch, E., Hopf bifurcation with broken reflection symmetry in rotating Rayleigh-Bénard convection, Europhys. Lett., 19, 177 (1992)
[149] Eckmann, J.-P.; Wayne, C. E., Propagating fronts and the center manifold theorem, Commun. Math. Phys., 161, 323 (1994)
[150] Elmer, F. J.; Burns, J.; Suhl, H., Front propagation into an unstable ferromagnetic state, Europhys. Lett., 22, 399 (1993)
[151] Elmer, F. J.; Eckmann, J.-P.; Hartsleben, G., Dual fronts propagating into an unstable state, Nonlinearity, 7, 1261 (1994) · Zbl 0810.35035
[152] Epstein, I. R.; Pojman, J. A., An Introduction to Nonlinear Chemical Dynamics (1998), Oxford University Press: Oxford University Press Oxford
[153] Eyink, G.; Xin, J., Statistical analysis of a semilinear hyperbolic system advected by a time random velocity field, Nonlinearity, 15, 551 (2002) · Zbl 1007.60066
[154] Fáth, G., Propagation failure of traveling waves in a discrete bistable medium, Physica D, 116, 176 (1998) · Zbl 0935.35070
[155] Fauve, S., Pattern forming instabilities, (Godrèche, C.; Manneville, P., Hydrodynamics and Nonlinear Instabilities (1998), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0904.76026
[156] Fedotov, S., Wave front for a reaction-diffusion system and relativistic Hamilton-Jacobi dynamics, Phys. Rev. E, 59, 5040 (1999)
[157] Fedotov, S., Front propagation into an unstable state of reaction-transport systems, Phys. Rev. Lett., 86, 926 (2001)
[158] M. Fermigier, P. Jennfer, L. Limat, J.E. Wesfreid, Fluid-fluid interaction instabilities induced by gravity, in: Proceedings VIIIth European Symposium on Materials and Fluid Sciences in Microgravity, ESA, 1992.; M. Fermigier, P. Jennfer, L. Limat, J.E. Wesfreid, Fluid-fluid interaction instabilities induced by gravity, in: Proceedings VIIIth European Symposium on Materials and Fluid Sciences in Microgravity, ESA, 1992.
[159] Fermigier, M.; Limat, L.; Wesfreid, J. E.; Boudinet, P.; Quillet, C., Two-dimensional patterns in Rayleigh-Taylor instability of a thin layer, J. Fluid Mech., 236, 349 (1992) · Zbl 0825.76192
[160] Fife, P. C., Dynamics of Internal Layers and Diffusive Interfaces (1988), SIAM: SIAM Philadelphia · Zbl 0684.35001
[161] Fineberg, J.; Steinberg, V., Vortex front propagation in Rayleigh-Bénard convection, Phys. Rev. Lett., 58, 1332 (1987)
[162] Fineberg, J.; Steinberg, V.; Kolodner, P., Weakly nonlinear states as propagating fronts in convecting binary mixtures, Phys. Rev. A, 41, 5743 (1990)
[163] Fisher, R. A., The wave of advance of advantageous genes, Ann. Eugenics, 7, 355 (1937) · JFM 63.1111.04
[164] Fokas, A. S., A new transform method for evolution partial differential equations, IMA J. Appl. Math., 67, 559 (2002) · Zbl 1028.35009
[165] Fort, J.; Méndez, V., Wavefronts in time-delayed reaction-diffusion systems. Theory and comparison to experiment, Rep. Prog. Phys., 65, 895 (2002)
[166] Fort, J.; Méndez, V., Time-delayed spread of virusses in growing plaques, Phys. Rev. Lett., 89, 178101 (2002)
[167] Frahm, H.; Ullah, S.; Dorsey, A. T., Flux dynamics and the growth of the superconducting phase, Phys. Lett., 66, 3067 (1991)
[168] Frank, F. C., (Doremus, R.; Roberts, B.; Turnbull, D., Growth and Perfection of Crystals (1958), Wiley: Wiley New York)
[169] Freeman, M. R., Picosecond studies of nonequilibrium flux dynamics in a superconductor, Phys. Rev. Lett., 69, 1691 (1992)
[170] M.I. Freidlin, Wave front propagation for FKPP-type equations in: J.B. Keller, D.W. McLaughlin, G.C. Papanicalaou (Eds.), Surveys in Applied Mathematics, Vol. 2, Plenum, New York, 1995.; M.I. Freidlin, Wave front propagation for FKPP-type equations in: J.B. Keller, D.W. McLaughlin, G.C. Papanicalaou (Eds.), Surveys in Applied Mathematics, Vol. 2, Plenum, New York, 1995. · Zbl 0848.60065
[171] Freidlin, M. I.; Lee, T.-Y., Wave front propagation and large deviations for diffusion-transmutation process, Probab. Theory Relat. Fields, 106, 39 (1996) · Zbl 0855.60075
[172] Freidlin, M., Reaction-diffusion in incompressible fluidasymptotic problems, J. Differential Equations, 179, 44 (2002)
[173] Fuentes, M.; Kuperman, M. N.; De Kepper, P., Propagation and interaction of cellular fronts in a closed system, J. Phys. Chem. A, 105, 6769 (2001)
[174] Gallay, Th.; Raugel, G., Stability of propagating fronts in damped hyperbolic equations, (Jäger, W.; Neǎs, J.; John, O.; Najzar, K.; Satá, J., Partial Differential Equations: Theory and Numerical Solutions (2000), Chapman & Hall: Chapman & Hall London) · Zbl 0931.35103
[175] Gallay, Th.; Raugel, G., Scaling variables and stability of hyperbolic fronts, SIAM J. Math. Anal., 32, 1 (2000) · Zbl 0963.35128
[176] Garcı́a-Ojalvo, J.M. Sancho, Noise in Spatially Extended Systems, Springer, Berlin, 1999.; Garcı́a-Ojalvo, J.M. Sancho, Noise in Spatially Extended Systems, Springer, Berlin, 1999. · Zbl 0938.60002
[177] Gardiner, C. W., Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (1985), Springer: Springer Berlin · Zbl 0862.60050
[178] Garnier, N.; Chiffaudel, A., Nonlinear transition to a global mode for traveling-wave instability in a finite box, Phys. Rev. Lett., 86, 75 (2001)
[179] Garnier, N.; Chiffaudel, A.; Daviaud, F., Convective and absolute Eckhaus instability leading to modulated waves in a finite box, Phys. Rev. Lett., 88, 134501 (2002)
[180] I.M. Gel’fand, Some problems in the theory of quasilinear equations, Usp. Mat. Nauk 14 No. 2 (86) (1959) 87 [Am. Math. Soc. Transl. Ser. 2, 29 (1963) 295].; I.M. Gel’fand, Some problems in the theory of quasilinear equations, Usp. Mat. Nauk 14 No. 2 (86) (1959) 87 [Am. Math. Soc. Transl. Ser. 2, 29 (1963) 295].
[181] Giacomelli, G.; Politi, A., Spatiotemporal chaos and localization, Europhys. Lett., 15, 387 (1991)
[182] Giacomelli, G.; Hegger, R.; Politi, A.; Vassalli, M., Convective Lyapunov exponents and propagation of correlations, Phys. Rev. Lett., 85, 3616 (2000)
[183] Golding, I.; Kozlovsky, Y.; Cohen, I.; Ben-Jacob, E., Studies of bacterial branching growth using reaction-diffusion models for colonial development, Phys. Rev. E, 59, 7025 (1999)
[184] Goldenfeld, N., Lectures on Phase Transitions and the Renormalization Group (1992), Addison-Wesley: Addison-Wesley Reading, MA
[185] Goldstein, R.; Nelson, P.; Powers, T.; Seifert, U., Front propagation in the pearling instability of tubular vesicles, J. Phys. II France, 6, 767 (1996)
[186] Gondret, P.; Ern, P.; Meignin, L.; Rabaud, M., Experimental evidence of a nonlinear transition from convective to absolute instability, Phys. Rev. Lett., 82, 1442 (1999)
[187] González-Cinca, R.; Rámirez-Piscina, L.; Casademunt, J.; Hernández-Machado, A.; Kramer, L.; Tóth-Katona, T.; Börzsönyi, T.; Buka, Á., Phase-field simulations and experiments of faceted growth in liquid crystals, Physica D, 99, 359 (1996) · Zbl 0900.82082
[188] Goriely, A., Simple solution to the nonlinear front problem, Phys. Rev. Lett., 75, 2047 (1995)
[189] Greenside, H. S.; Cross, M. C., Pattern Formation and Dynamics of Nonequilibrium Systems (2003), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1098.76537
[190] Grossmann, S., The onset of shear flow turbulence, Rev. Mod. Phys., 72, 603 (2000)
[191] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (1983), Springer: Springer New York · Zbl 0515.34001
[192] J.D. Gunton, M. San Miguel, P.S. Sahni, in: C. Domb, J.L. Lebowitz (Eds.), Phase Transitions and Critical Phenomena, Vol. 8, Academic, New York, 1983.; J.D. Gunton, M. San Miguel, P.S. Sahni, in: C. Domb, J.L. Lebowitz (Eds.), Phase Transitions and Critical Phenomena, Vol. 8, Academic, New York, 1983.
[193] Hakim, V., Asymptotic techniques in nonlinear problems: some illustrative examples, (Godrèche, C.; Manneville, P., Hydrodynamics and Nonlinear Instabilities (1998), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0898.76020
[194] Halperin, B. I.; Lubensky, T. C.; Ma, S. K., First-order transitions in superconductors and smectic-A liquid crystals, Phys. Rev. Lett., 32, 292 (1974)
[195] Halpin-Healy, T.; Zhang, Y. C., Kinetic roughening, stochastic growth, directed polymers and all that, Phys. Rep., 254, 215 (1995)
[196] Hansen, J. L.; Bohr, T., Comment on “Stability of solitary pulse against wave packet disturbances in an active medium”, Phys. Rev. Lett., 77, 5441 (1996)
[197] Henningson, D. S., Wave growth and spreading of a turbulent spot in plane Poiseuille flow, Phys. Fluids A, 1, 1876 (1989) · Zbl 0684.76056
[198] Hereman, W.; Takaoka, M., Solitary wave solutions of nonlinear evolution and wave-equations using a direct method and Macsyma, J. Phys. A., 23, 4805 (1990) · Zbl 0719.35085
[199] Hohenberg, P. C.; Halperin, B. I., Theory of dynamical critical phenomena, Rev. Mod. Phys., 49, 435 (1977)
[200] Horváth, D.; Petrov, V.; Scott, S. K.; Showalter, K., Instabilities in propagating reaction-diffusion fronts, J. Chem. Phys., 98, 6332 (1993)
[201] Horváth, D.; Tóth, A., Diffusion-driven front instabilities in the chlorite-tetrathionate reaction, J. Chem. Phys., 108, 1447 (1998)
[202] Huebener, R. P., Magnetic Flux Structures in Superconductors (2001), Springer: Springer Berlin · Zbl 0971.82045
[203] Huerre, P.; Monkewitz, P. A., Local and global instabilities in spatially developing flows, Annu. Rev. Fluid Mech., 22, 473 (1990) · Zbl 0734.76021
[204] Huerre, P., (Wesfreid, J. E.; Brand, H. R.; Manneville, P.; Albinet, G.; Boccara, N., Propagation in Systems Far from Equilibrium (1988), Springer: Springer New York)
[205] Huerre, P.; Rossi, M., Hydrodynamic instabilities in open flows, (Godrèche, C.; Manneville, P., Hydrodynamics and Nonlinear Instabilities (1998), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0904.76021
[206] Hunt, R. E.; Crighton, D. G., Instability of flows in spatially developing media, Proc. R. Soc. London A, 435, 109 (1991) · Zbl 0731.76032
[207] Israeli, N.; Kandel, D.; Schatz, M. F.; Zangwill, A., Convective instability of strained layers step flow, Surf. Sci., 494, L735 (2001)
[208] Jones, R. A.L.; Norton, L. J.; Kramer, E. J.; Bates, F. S.; Wiltzius, P., Surface-directed spinodal decomposition, Phys. Rev. Lett., 66, 1326 (1991)
[209] Joulin, G.; Vidal, P., An introduction to the instability of flames, shocks and detonations, (Godrèche, C.; Manneville, P., Hydrodynamics and Nonlinear Instabilities (1998), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0904.76093
[210] Jung, Ch.; Lücke, M.; Büchel, P., Influence of through-flow on linear pattern formation properties in binary mixture convection, Phys. Rev. E, 54, 1510 (1996)
[211] Kaern, M.; Menziger, M., Pulsating wave propagation in reactive flowsflow distributed oscillations, Phys. Rev. E, 61, 3334 (2000)
[212] Kaliappan, P., An exact solution for traveling waves of \(u_t= Du_{ xx }+u\)−\(u^k \), Physica D, 11, 368 (1984) · Zbl 0583.35056
[213] Kaneko, K., Lyapunov analysis and information flow in coupled map lattices, Physica, 23D, 436 (1986)
[214] Kandel, D.; Weeks, J. D., Step bunching as a chaotic pattern formation process, Phys. Rev. Lett., 69, 3758 (1992)
[215] Kandel, D.; Weeks, J. D., Simultaneous bunching and debunching of surface stepstheory and relation to experiments, Phys. Rev. Lett., 74, 3632 (1995)
[216] Kapitula, T., On the stability of traveling waves in weighted \(L^∞\) spaces, J. Differential Equations, 112, 179 (1994) · Zbl 0803.35067
[217] Kaplan, E.; Steinberg, V., Phase slippage, nonadiabatic effect, and dynamics of source of traveling waves, Phys. Rev. Lett., 71, 3291 (1993)
[218] Kardar, M.; Parisi, G.; Zhang, Y. C., Dynamics scaling of growing interfaces, Phys. Rev. Lett., 56, 889 (1986) · Zbl 1101.82329
[219] Karma, A.; Rappel, W.-J., Quantitative phase field modeling of dendritic growth in two and three dimensions, Phys. Rev. E, 57, 4323 (1998) · Zbl 1086.82558
[220] Kassner, K., Pattern Formation in Diffusion-Limited Crystal Growth (1996), World Scientific: World Scientific Singapore
[221] Kassner, K.; Misbah, C.; Müller, J.; Kappey, J.; Kohlert, P., Phase-field modeling of stress-induced instabilities, Phys. Rev. E, 63, 036117 (2001)
[222] Keener, J.; Sneyd, J., A Mathematical Introduction to Medical Physiology (1998), Springer: Springer New York
[223] Kerstein, A. R., Computational study of propagating fronts in a lattice gas model, J. Stat. Phys., 45, 921 (1986)
[224] Kerstein, A. R., A 2-particle representation of front propagation in diffusion-reaction systems, J. Stat. Phys., 53, 703 (1988)
[225] Kerstein, A. R.; Ashurst, W. T.; Williams, F. A., Field equation for interface propagation in an unsteady homogeneous flow field, Phys. Rev. A, 37, 2728 (1998)
[226] Kessler, D. A.; Koplik, J.; Levine, H., Pattern selection in fingered growth phenomena, Adv. Phys., 37, 255 (1988)
[227] Kessler, D. A.; Ner, Z.; Sander, L. M., Front propagationprecursors, cutoffs, and structural stability, Phys. Rev. E, 58, 107 (1998)
[228] Kessler, D. A.; Levine, H., Fluctuation-induced diffusive instabilities, Nature, 394, 556 (1999)
[229] Kinzel, J.; Keller, J. B., Traveling wave solutions of a nerve conduction equation, Biophys. J., 13, 1313 (1973)
[230] Kirchgässner, K., On the nonlinear dynamics of traveling fronts, J. Differential Equations, 96, 256 (1992) · Zbl 0802.35078
[231] Kitsunezaki, S., Interface dynamics for bacterial colony formation, J. Phys. Soc. Japan, 66, 1544 (1997) · Zbl 0961.92005
[232] Kobayashi, R., Modeling and numerical simulations of dendritic crystal growth, Physica, 63D, 410 (1993) · Zbl 0797.35175
[233] Kockelkoren, J.; Storm, C.; van Saarloos, W., Evidence for slow velocity relaxation in front propagation in Rayleigh-Bénard convection, Physica D, 174, 168 (2003) · Zbl 1076.76520
[234] A. Kolmogoroff, I. Petrovsky, N. Piscounoff, Study of the diffusion equation with growth of the quantity of matter and its application to a biology problem, Bulletin de l’université d’état à Moscou, Ser. int., Section A, Vol. 1 (1937); translated and reprinted in [338]; A. Kolmogoroff, I. Petrovsky, N. Piscounoff, Study of the diffusion equation with growth of the quantity of matter and its application to a biology problem, Bulletin de l’université d’état à Moscou, Ser. int., Section A, Vol. 1 (1937); translated and reprinted in [338]
[235] Kolodner, P., Stable, unstable and defected confined states of traveling wave convection, Phys. Rev. E, 50, 2731 (1994)
[236] Kozlovsky, Y.; Cohen, I.; Golding, I.; Ben-Jacob, E., Lubricating bacteria model for branching growth of bacterial colonies, Phys. Rev. E, 59, 7025 (1999)
[237] Kramer, L.; Ben-Jacob, E.; Brand, H.; Cross, M. C., Wavelength selection in systems far from equilibrium, Phys. Rev. Lett., 49, 1891 (1982)
[238] Krug, J.; Meakin, P., Columnar growth in oblique incidence ballistic depositionfaceting, noise reduction, and mean-field theory, Phys. Rev. A, 43, 900 (1991)
[239] Krug, J., Origin of scale invariance in growth processes, Adv. Phys., 46, 139 (1997)
[240] Kuo, E. Y.; Cross, M. C., Traveling-wave wall states in rotating Rayleigh-Bénard convection, Phys. Rev. E, 47, R2245 (1993)
[241] O. Kupervasser, Z. Olami, I. Procaccia, Stability analysis of flame fronts: dynamical systems approach in the complex plane (nlin.PS/0302020).; O. Kupervasser, Z. Olami, I. Procaccia, Stability analysis of flame fronts: dynamical systems approach in the complex plane (nlin.PS/0302020).
[242] Kuppers, G.; Lorz, D., Transition from laminar convection to thermal turbulence in a rotating fluid layer, J. Fluid Mech., 35, 609 (1969) · Zbl 0164.56104
[243] Kuramoto, Y.; Tsuzuki, T., Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55, 356 (1976)
[244] Kuramoto, Y., Chemical Oscillations, Waves, and Turbulence (1984), Springer: Springer Berlin · Zbl 0558.76051
[245] Landau, L. D., On the theory of slow combustion, Zh. Eksp. Teor. Fiz., 14, 240 (1944)
[246] L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, in: Course of Theoretical Physics, Vol. 8, Pergamon, New York, 1975.; L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, in: Course of Theoretical Physics, Vol. 8, Pergamon, New York, 1975. · Zbl 0122.45002
[247] Langer, J. S., Instabilities and pattern formation in crystal growth, Rev. Mod. Phys., 52, 1 (1980)
[248] Langer, J. S.; Müller-Krumbhaar, H., Mode selection in a dendritelike nonlinear system, Phys. Rev. A, 27, 499 (1983)
[249] Langer, J. S., (Grinstein, G.; Mazenko, G., Directions in Condensed Matter Physics (1986), World Scientific: World Scientific Singapore)
[250] Langer, J. S., (Souletie, J., Chance and Matter (1987), North-Holland: North-Holland Amsterdam)
[251] Langer, J. S., (Godreche, C., Solids Far from equilibrium (1992), Cambridge University Press: Cambridge University Press Cambridge)
[252] Larson, D. A., Transient bounds and time asymptotic behavior of solutions of nonlinear equations of Fisher type, SIAM J. Appl. Math., 34, 93 (1978) · Zbl 0373.35036
[253] Latyshev, A. V.; Krasilnikov, A. B.; Aseev, A. L., UHV REM study of the anti-band structure on the vicinal Si(111) surface under heating by a direct electric current, Surf. Sci., 311, 395 (1994)
[254] Lengyel, I.; Kádár, S.; Epstein, I. R., Transient turing structures in a gradient-free closed system, Science, 259, 493 (1993)
[255] Leach, J. A.; Needham, D. J., The evolution of traveling waves in generalized Fisher equations via matched asymptotic expansionsalgebraic corrections, Q. J. Mech. Appl. Math., 54, 157 (2001) · Zbl 0973.35054
[256] Leach, J. A.; Needham, D. J.; Kay, A. L., The evolution of reaction-diffusion waves in a class of scalar reaction-diffusion equationsalgebraic decay rates, Physica D, 167, 153 (2002) · Zbl 1002.35068
[257] Le Dizès, S.; Huerre, P.; Chomaz, J. M.; Monkewitz, P. A., Linear global modes in spatially developing media, Phil. Trans. R. Soc. London A, 454, 169 (1996) · Zbl 0855.35103
[258] Lega, J.; Moloney, J. V.; Newell, A. C., Swift-Hohenberg equation for lasers, Phys. Rev. Lett., 73, 2978 (1994)
[259] Lemarchand, A.; Lesne, A.; Perera, A.; Moreau, M.; Mareschal, M., Chemical wave front in two dimensions, Phys. Rev. E., 48, 1568 (1993)
[260] Lemarchand, A.; Lesne, A.; Mareschal, M., Langevin approach to a chemical wave-front—selection of the propagation velocity in the presence of internal noise, Phys. Rev. E, 51, 4457 (1995)
[261] Leweke, T.; Provansal, M., Model for the transition in bluff body wakes, Phys. Rev. Lett., 72, 3174 (1994)
[262] Leweke, T.; Provansal, M.; Miller, G. D.; Williamson, C. H.K., Cell formation in cylindrical wakes at low Reynolds numbers, Phys. Rev. Lett., 78, 1259 (1997)
[263] Li, G.; Ouyang, Q.; Swinney, H. L., Transitions in two-dimensional patterns in a ferrocyanide-iodate-sulfite reaction, J. Chem. Phys., 105, 10830 (1996)
[264] E.M. Lifshitz, L.P. Pitaevskii, Physical kinetics, Course of Theoretical Physics, Vol. 10, Pergamon, New York, 1981.; E.M. Lifshitz, L.P. Pitaevskii, Physical kinetics, Course of Theoretical Physics, Vol. 10, Pergamon, New York, 1981.
[265] Limat, L.; Jenffer, P.; Dagens, B.; Touron, E.; Fermigier, M.; Wesfreid, J. E., Gravitational instabilities of thin liquid layersdynamics of pattern selection, Physica D, 61, 166 (1992) · Zbl 0800.76009
[266] Liu, F.; Goldenfeld, N., Dynamics of phase separation in block co-polymer melts, Phys. Rev. A, 39, 4805 (1989)
[267] Liu, F.; Mondello, M.; Goldenfeld, N., Kinetics of the superconducting transition, Phys. Rev. Lett., 66, 3071 (1991)
[268] Logan, J. D., An Introduction to Nonlinear Partial Differential Equations (1994), Wiley: Wiley New York · Zbl 0834.35001
[269] Lücke, M.; Mihelcic, M.; Kowalski, B., Propagation of Taylor vortex fronts into unstable circular Couette flow, Phys. Rev. Lett., 52, 625 (1984)
[270] Lücke, M.; Mihelcic, M.; Kowalski, B., Front propagation and pattern formation of Taylor vortices growing into unstable circular Couette flow, Phys. Rev. A, 31, 399 (1985)
[271] Lücke, M.; Mihelcic, M.; Kowalski, B., Propagating convection fronts, Phys. Rev. A, 35, 4001 (1987)
[272] Lücke, M.; Szprynger, A., Noise sustained pattern growthbulk versus boundary effects, Phys. Rev. E, 55, 5509 (1997)
[273] L’vov, V.; Lebedev, V. V.; Paton, M.; Procaccia, I., Proof of scale-invariant solutions in the Kardar-Parisi-Zhang and Kuramoto-Sivashinsky equations in 1+1 dimensions—analytical and numerical results, Nonlinearity, 6, 25 (1993) · Zbl 0765.35051
[274] Maclennan, J. E.; Clark, N. A.; Carlsson, T., (Lam, L., Solitons in liquid Crystals (1991), Springer: Springer Berlin)
[275] P.K. Maini, S. McElwain, D. Leavesley, Traveling Waves in a Wound Healing Assay, Appl. Math. Lett., 2002, submitted.; P.K. Maini, S. McElwain, D. Leavesley, Traveling Waves in a Wound Healing Assay, Appl. Math. Lett., 2002, submitted. · Zbl 1055.92025
[276] P.K. Maini, S. McElwain, D. Leavesley, A traveling wave model to interpret a wound healing cell migration assay for human peritoneal mesothelial cells, unpublished.; P.K. Maini, S. McElwain, D. Leavesley, A traveling wave model to interpret a wound healing cell migration assay for human peritoneal mesothelial cells, unpublished. · Zbl 1055.92025
[277] Malevanets, A.; Careta, A.; Kapral, R., Biscale chaos in propagating fronts, Phys. Rev. E, 52, 4724 (1995)
[278] Malomed, B., Nonlinear waves in nonequilibrium systems of the oscillatory type, part I, Z. Phys. B, 55, 241 (1984)
[279] Malomed, B., Nonlinear waves in nonequilibrium systems of the oscillatory type, part II, Z. Phys. B, 55, 249 (1984)
[280] Malomed, B. A.; Nepomnyashchy, A. A., Two-dimensional stability of convection rolls in the presence of a ramp, Europhys. Lett., 21, 195 (1993)
[281] Mancinelli, R.; Vergni, D.; Vulpiani, A., Superfast front propagation in reactive systems with anomalous diffusion, Europhys. Lett., 60, 532 (2002)
[282] Manneville, P., Dissipative Structures and Weak Turbulence (1990), Academic Press: Academic Press Boston · Zbl 0714.76001
[283] Manneville, P.; Dauchot, O., Patterning and transition to turbulence in subcritical systems: the plane Couette flow, (Rubi, M., Coherent Structures in Classical Systems (2000), Springer: Springer Berlin) · Zbl 1056.76513
[284] Marees, G.; Mudde, R. F.; van Beelen, H., On the motion of plugs of turbulence in the flow of helium II, Physica B, 144, 292 (1987)
[285] Marchevsky, M.; Gurevich, L. A.; Kes, P. H.; Aarts, J., Flux droplet formation in \(NbSe_2\) single crystals observed by decoration, Phys. Rev. Lett., 75, 2400 (1995)
[286] Mathis, C.; Provansal, M.; Boyer, L., The Bénard-Von Karman instabilityan experimental study near threshold, J. Phys. Lett., 45, L483 (1984)
[287] Martin, O.; Goldenfeld, N. D., Origin of sidebranching in dendritic growth, Phys. Rev. A, 35, 1382 (1987)
[288] Matsushita, M., (Shapiro, J. A.; Dworkin, M., Bacteria as Multicellular Organisms (1997), Oxford University Press: Oxford University Press Oxford)
[289] Mazenko, G. F.; Valls, O. T.; Ruggiero, P., Front propagation into an unstable state in the presence of noise, Phys. Rev. B, 40, 384 (1989)
[290] P.N. McGraw, M. Menziger, Towards a general theory of nonlinear flow-distributed oscillations, preprint nlin.PS/030372.; P.N. McGraw, M. Menziger, Towards a general theory of nonlinear flow-distributed oscillations, preprint nlin.PS/030372.
[291] McKean, H. P., Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Pikunov, Commun. Pure Appl. Math., 28, 323 (1975) · Zbl 0316.35053
[292] Meakin, P., Fractals, Scaling and Growth Far from Equilibrium (1998), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1064.37500
[293] Meron, E., Pattern formation in excitable media, Phys. Rep., 218, 1 (1992)
[294] Hagberg, A.; Meron, E., Domain walls in nonequilibrium systems and the emergence of persistent patterns, Phys. Rev. E, 48, 705 (1993)
[295] Metz, J. A.J., (Mollison, D., Epidemic Models, their Structure and Relation to Data (1995), Cambridge University Press: Cambridge University Press Cambridge)
[296] Metz, J. A.J.; Mollison, D.; van den Bosch, F., The dynamics of invasion waves, (Dieckmann, U.; Law, R.; Metz, J. A.J., The Geometry of Ecological Interactions: Simplifying Spatial Complexity (2000), Cambridge University Press: Cambridge University Press Cambridge)
[297] Mikhailov, A. S.; Schiemansky-Geier, L.; Ebeling, W., Stochastic motion of the propagating front in bistable media, Phys. Lett. A, 46, 453 (1983)
[298] Mimura, M.; Sakaguchi, H.; Matsushita, M., Reaction-diffusion modelling of bacterial colony patterns, Physica A, 282, 283 (2000)
[299] Misbah, C., Wavelength selection in rotating solidification of binary mixtures, J. Phys. France, 50, 971 (1989)
[300] Monkewitz, P. A., The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers, Phys. Fluids, 31, 999 (1988)
[301] Monkewitz, P. A.; Huerre, P.; Chomaz, J. M., Global instability analysis of weakly non-parallel shear flows, J. Fluid Mech., 251, 1 (1993) · Zbl 0782.76042
[302] Monkewitz, P. A.; Williams, C. K.H.; Miller, G. D., Phase dynamics of Karman vortices in cylindrical wakes, Phys. Fluids, 8, 91 (1996)
[303] Moro, E., Internal fluctuation effects on Fisher waves, Phys. Rev. Lett., 87, 238303 (2001)
[304] Moro, E., Emergence of pulled fronts in fermionic microscopic particle models, Phys. Rev. E, 68, 025102 (2003)
[305] Müller, H. W.; Lücke, M.; Kamps, M., Transversal convection pattern in horizontal shear flow, Phys. Rev. A, 45, 314 (1992)
[306] Müller, J.; van Saarloos, W., Morphological instability of bacterial growth fronts, Phys. Rev. E, 65, 061111 (2002)
[307] Mueller, C.; Sowers, R. B., Random traveling waves for the KPP equation with noise, J. Funct. Anal., 128, 439 (1995) · Zbl 0820.60039
[308] Mullins, W. W.; Sekerka, R. F., Morphological stability of a particle growing by diffusion or heat flow, J. Appl. Phys., 34, 323 (1963)
[309] Mullins, W. W.; Sekerka, R. F., Stability of a planar interface during solidification of a dilute binary alloy, J. Appl. Phys., 35, 444 (1964)
[310] C.B. Muratov, A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type, Discrete Continuous Dyn. Systems, series B, to appear.; C.B. Muratov, A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type, Discrete Continuous Dyn. Systems, series B, to appear. · Zbl 1069.35031
[311] Murray, J. D., Mathematical Biology (1989), Springer: Springer Berlin · Zbl 0682.92001
[312] Musette, M.; Conte, R., Analytic solitary waves of nonintegrable equations, Physica D, 181, 70 (2003) · Zbl 1098.74615
[313] Nauenberg, M., Critical growth velocity in diffusion-controlled aggregation, Phys. Rev. B, 28, 449 (1983)
[314] Needham, D. J.; Barnes, A. N., Reaction-diffusion and phase waves occurring in a class of scalar reaction-diffusion equations, Nonlinearity, 12, 41 (1999) · Zbl 0933.35096
[315] A.C. Newell, Envelope equation, in: Lectures in Applied Mathematics, American Mathematical Society, Providence, RI, 1974.; A.C. Newell, Envelope equation, in: Lectures in Applied Mathematics, American Mathematical Society, Providence, RI, 1974. · Zbl 0291.35005
[316] Newell, A. C.; Passot, T.; Lega, J., Order parameter equations for patterns, Annu. Rev. Fluid Mech., 25, 399 (1993)
[317] Newman, W. I., The long-time behavior of solutions to a nonlinear diffusion problem in population genetics and combustion, J. Theor. Biol., 104, 473 (1983)
[318] Niklas, M.; Lücke, M.; Müller-Krumbhaar, H., Propagating front of a propagating patterninfluence of group velocity, Europhys. Lett., 9, 237 (1989)
[319] Niklas, M.; Lücke, M.; Müller-Krumbhaar, H., Velocity of a propagating Taylor-vortex front, Phys. Rev. A, 40, 493 (1989)
[320] Nishiura, Y., Far-From-Equilibrium Dynamics (2002), American Mathematical Society: American Mathematical Society Providence, RI
[321] Nozaki, K.; Bekki, N., Pattern selection and spatio-temporal transition to chaos in the Ginzburg-Landau equation, Phys. Rev. Lett., 51, 2171 (1983)
[322] Nozaki, K.; Bekki, N., Exact solutions of the generalized Ginzburg-Landau equation, J. Phys. Soc. Japan, 53, 1581 (1984)
[323] Ogiwara, T.; Matano, H., Monotonicity and convergence results in order-preserving systems in the presence of symmetry, Discrete Continuous Dyn. Systems, 5, 1 (1999) · Zbl 0958.37061
[324] Oras, A.; Davis, S. H.; Bankoff, S. G., Long-scale evolution of thin liquid films, Rev. Mod. Phys., 69, 931 (1997)
[325] Oron, A.; Rosenau, P., Some symmetries of the nonlinear heat and wave equations, Phys. Lett. A, 118, 172 (1986) · Zbl 1020.35501
[326] Otwinowski, M.; Paul, R.; Laidlaw, W. G., Exact traveling wave solutions of a class of nonlinear diffusion equations by reduction to quadrature, Phys. Lett. A, 128, 483 (1988)
[327] Ouyang, Q.; Swinney, H. L., Transition from a uniform state to hexagonal and striped turing patterns, Nature, 352, 610 (1991)
[328] Panja, D.; van Saarloos, W., The weakly pushed nature of “pulled” fronts with a cutoff, Phys. Rev. E, 65, 057202 (2002)
[329] Panja, D.; van Saarloos, W., Fluctuating pulled frontsthe origin and the effects of a finite particle cutoff, Phys. Rev. E, 66, 036206 (2002)
[330] Panja, D.; van Saarloos, W., Fronts with a growth cutoff but speed higher than \(v^*\), Phys. Rev. E, 66, 015206(R) (2002)
[331] Panja, D.; Tripathy, G.; van Saarloos, W., Front propagation and diffusion in the A to 2A hard-core reaction on a chain, Phys. Rev. E, 67, 046206 (2003)
[332] D. Panja, Effects of fluctuations on propagating fronts (cond-mat/0307363).; D. Panja, Effects of fluctuations on propagating fronts (cond-mat/0307363).
[333] Paquette, G. C.; Chen, L.-Y.; Goldenfeld, N.; Oono, Y., Structural stability and renormalization group for propagating fronts, Phys. Rev. Lett., 72, 76 (1994)
[334] Paquette, G. C.; Oono, Y., Structural stability and selection of propagating fronts in semi-linear parabolic partial differential equations, Phys. Rev. E, 49, 2368 (1994)
[335] Pastur, L.; Westra, M.-T.; van de Water, W.; van Hecke, M.; Storm, C.; van Saarloos, W., Sources and holes in a one-dimensional traveling wave experiment, Phys. Rev. E, 67, 036305 (2003)
[336] Pastur, L.; Westra, M.-T.; van de Water, W., Sources and sinks in 1D traveling waves, Physica D, 174, 71 (2003) · Zbl 1076.76507
[337] Pechenik, L.; Levine, H., Interfacial velocity correction due to multiplicative noise, Phys. Rev. E, 59, 3893 (1999)
[338] Pelcé, P., Dynamics of Curved Fronts (1988), Academic Press: Academic Press San Diego · Zbl 0712.76009
[339] Peletier, L. A., The porous media equation, (Amman, H.; Bazley, N.; Kirchgaessner, K., Application of Nonlinear Analysis in the Physical Sciences (1981), Pitman: Pitman London) · Zbl 0497.76083
[340] Peletier, L. A.; Troy, W. C., Spatial Patterns: Higher Order Models in Physics and Mechanics (2001), Birkäuser: Birkäuser Boston · Zbl 0872.34032
[341] Peters, N., Turbulent Combustion (2000), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0955.76002
[342] Pier, B.; Huerre, P.; Chomaz, J.-M.; Couairon, A., Steep nonlinear global modes in spatially developing media, Phys. Fluids, 10, 2433 (1998) · Zbl 1185.76623
[343] Pier, B.; Huerre, P.; Chomaz, J. M., Bifurcations to fully nonlinear synchronized structures in slowly varying media, Physica D, 148, 49 (2001) · Zbl 0989.76024
[344] Pier, B.; Huerre, P., Fully nonlinear global modes in spatially developing media, J. Fluid Mech., 435, 145 (2001)
[345] Pier, B., On the frequency selection of finite-amplitude vortex shedding in the cylindrical wake, J. Fluid. Mech., 458, 407 (2002) · Zbl 1060.76031
[346] Pieters, R.; Langer, J. S., Noise-driven sidebranching in the boundary-layer model of dendritic solidification, Phys. Rev. Lett., 56, 1948 (1986)
[347] Pieters, R., Noise-induced sidebranching in the boundary-layer model of dendritic solidification, Phys. Rev. A, 37, 3126 (1988)
[348] Pikovsky, A.; Politi, A., Dynamic localization of Lyapunov vectors in space-time chaos, Nonlinearity, 11, 1049 (1998) · Zbl 0906.58028
[349] Pinter, A.; Lücke, M.; Hoffmann, Ch., Spiral and Taylor vortex fronts and pulses in axial through flow, Phys. Rev. E, 67, 026318 (2003)
[350] Pismen, L. M.; Nepomnyashchy, A. A., Propagation of the hexagonal pattern, Europhys. Lett., 27, 433 (1994)
[351] Pomeau, Y.; Pumir, A.; Pelcé, P., Intrinsic stochasticity with many degrees of freedom, J. Stat. Phys., 37, 39 (1984)
[352] Pomeau, Y., Front motion, metastability and subcritical bifurcations in hydrodynamics, Physica, 23D, 3 (1986)
[353] Pomea, Y.; Ben-Amar, M., Dendritic growth and related topics, (Godrèche, C., Solids Far from Equilibrium (1992), Cambridge University Press: Cambridge University Press Cambridge)
[354] Powell, J. A.; Newell, A. C.; Jones, C. K.R. T., Competition between generic and nongeneric fronts in envelope equations, Phys. Rev. A, 44, 3636 (1991)
[355] Powell, J. A.; Tabor, M., Nongeneric connections corresponding to front solutions, J. Phys. A, 25, 3773 (1992) · Zbl 0794.35082
[356] Powers, T. R.; Goldstein, R. E., Pearling and pinchingpropagation of Rayleigh instabilities, Phys. Rev. Lett., 78, 2555 (1997)
[357] Powers, T. R.; Zhang, D.; Goldstein, R. E.; Stone, H. A., Propagation of a topological transitionthe Rayleigh instability, Phys. Fluids, 10, 1052 (1998) · Zbl 1185.76641
[358] Proctor, M. R.E.; Tobias, S.; Knobloch, E., Noise-sustained structures due to convective instability in finite domains, Physica D, 145, 191 (2000) · Zbl 0963.35164
[359] Qian, X. W.; Cummins, H. Z., Dendritic sidebranching initiation by a localized heat pulse, Phys. Rev. Lett., 64, 3038 (1990)
[360] Ramani, A.; Grammaticos, B.; Bountis, T., The Painlevé property and singularity analysis of integrable and nonintegrable systems, Phys. Rep., 180, 159 (1989)
[361] Recktenwald, A.; Lücke, M.; Müller, H. W., Taylor vortex formation in axial through-flowlinear and weakly nonlinear analysis, Phys. Rev. E, 48, 4444 (1993)
[362] Riecke, H., Imperfect wave-number selection by ramps in a model for Taylor vortex flow, Phys. Rev. A, 37, 636 (1988)
[363] Riordan, J.; Doering, C. R.; ben-Avraham, D., Fluctuations and stability of Fisher waves, Phys. Rev. Lett., 75, 565 (1995)
[364] Rocco, A.; Ebert, U.; van Saarloos, W., Subdiffusive fluctuations of pulled fronts with multiplicative noise, Phys. Rev. E, 62, R13 (2000)
[365] Rocco, A.; Casademunt, J.; Ebert, U.; van Saarloos, W., The diffusion coefficient of propagating fronts with multiplicative noise, Phys. Rev. E, 65, 012102 (2002)
[366] Rocco, A.; Ramirez-Piscina, L.; Casademunt, J., Kinematic reduction of reaction-diffusion fronts with multiplicative noisederivation of stochastic sharp-interface equations, Phys. Rev. E, 65, 056116 (2002)
[367] Rost, M.; Krug, J., A particle model for the Kuramoto-Sivashinksky equation, Physica D, 88, 1 (1995)
[368] Roth, D.; Lc̈ke, M.; Kamps, M.; Schmitz, R., Phase dynamics of patternsthe effect of boundary induced amplitude variations, Phys. Rev. E, 50, 2756 (1994)
[369] V. Rottschäfer, Co-dimension 2 phenomena in pattern formation, Thesis, Utrecht, 1998.; V. Rottschäfer, Co-dimension 2 phenomena in pattern formation, Thesis, Utrecht, 1998.
[370] Rottschäfer, V.; Doelman, A., On the transition from the Ginzburg-Landau equation to the extended Fisher-Kolmogorov equation, Physica D, 118, 261 (1998) · Zbl 1194.76055
[371] Rottschäfer, V.; Wayne, C. A., Existence and stability of traveling fronts in the extended Fisher-Kolmogorov equation, J. Differential Equations, 176, 532 (2001) · Zbl 1109.35361
[372] Sakaguchi, H.; Tokunaga, S., Tip oscillation of dendritic patterns in a phase field model, Prog. Theor. Phys., 109, 43 (2003)
[373] Salje, E. K.H., On the kinetics of partially conserved order parametersa possible mechanism for pattern formation, J. Phys.: Condens. Matter, 5, 4775 (1993)
[374] Sandstede, B.; Scheel, A., Essential instabilities of frontsbifurcation, and bifurcation failure, Dyn. Systems, 16, 1 (2001) · Zbl 1055.37069
[375] B. Sandstede, A. Scheel, Defects in oscillatory media—towards a classification (preprint May 2003).; B. Sandstede, A. Scheel, Defects in oscillatory media—towards a classification (preprint May 2003). · Zbl 1059.37062
[376] Sattinger, D. H., Weighted norms of the stability of traveling waves, J. Differential Equations, 25, 130 (1977) · Zbl 0315.35010
[377] Schimansky-Geier, L.; Zülicke, Ch., Kink propagation induced by multiplicative noise, Z. Phys. B, 82, 157 (1991)
[378] Schumacher, J.; Eckhardt, B., Evolution of turbulent spots in an parallel shear flow, Phys. Rev. E., 63, 046307 (2001)
[379] Scott, A. C., The electrophysics of a nerve fiber, Rev. Mod. Phys., 47, 487 (1975)
[380] Shraiman, B.; Bensimon, D., On the dynamical mechanism of velocity selection, Phys. Scr., T9, 123 (1985)
[381] Shraiman, B. I., Order, disorder, and phase turbulence, Phys. Rev. Lett., 57, 325 (1986)
[382] Shraiman, B. I.; Pumir, A.; van Saarloos, W.; Hohenberg, P. C.; Chaté, H.; Holen, M., Spatiotemporal chaos in the one-dimensional complex Ginzburg-Landau equation, Physica D, 57, 241 (1992) · Zbl 0759.35045
[383] W. Spruijt, Master’s thesis, Leiden University 1998 (available from the author).; W. Spruijt, Master’s thesis, Leiden University 1998 (available from the author).
[384] Stokes, A. N., On two types of moving fronts in quasilinear diffusion, Math. Biosci., 31, 307 (1976) · Zbl 0333.35048
[385] Shigesada, N.; Kawasaki, K., Biological Invasions: Theory and Practice (1997), Oxford University Press: Oxford University Press Oxford
[386] Sivashinsky, G. I., Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations, Acta Astronaut., 4, 1177 (1977) · Zbl 0427.76047
[387] Stewart, I. W.; Carlsson, T.; Leslie, F. M., Chaotic instabilities in smectic-C liquid crystals, Phys. Rev. E, 49, 2130 (1994) · Zbl 0974.82510
[388] Storm, C.; Spruijt, W.; Ebert, U.; van Saarloos, W., Universal algebraic relaxation of velocity and phase in pulled fronts generating periodic or chaotic states, Phys. Rev. E, 61, R6063 (2000)
[389] Swift, J.; Hohenberg, P. C., Hydrodynamic fluctuations at the convective instability, Phys. Rev. A, 15, 319 (1977)
[390] Szprynger, A.; Lücke, M., Noise sensitivity of sub- and supercritically bifurcating patterns with group velocity close to the convective-absolute instability, Phys. Rev. E, 67, 046301 (2003)
[391] Theodorakis, S.; Leontides, E., Emergence of approximate translation invariance in finite intervals as a speed selection mechanism for propagating fronts, Phys. Rev. E, 62, 7802 (2000)
[392] Theodorakis, S.; Leontides, E., Speed selection mechanism for propagating fronts in reaction diffusion systems with multiple fields, Phys. Rev. E, 65, 026122 (2002)
[393] Thürmer, K.; Liu, D. J.; Williams, E. D.; Weeks, J. D., Onset of stepa anitbanding instability due to surface electromigration, Phys. Rev. Lett., 83, 5531 (1999)
[394] Tinkham, M., Introduction to Superconductivity (1975), McGraw-Hill: McGraw-Hill New York
[395] Tobias, S.; Proctor, M. R.E.; Knobloch, E., Convective and absolute instabilities of fluid flows in finite geometry, Physica D, 113, 43 (1998) · Zbl 0962.76526
[396] Torcini, A.; Grassberger, P.; Politi, A., Error propagation in extended chaotic systems, J. Phys. A, 28, 4533 (1995) · Zbl 0870.58089
[397] Torcini, A.; Vulpiani, A.; Rocco, A., Front propagation in chaotic and noisy reaction-diffusion systemsa discrete-time map approach, Eur. J. Phys. B, 25, 333 (2002)
[398] Tóth, A.; Lagzi, I.; Horváth, D., Pattern formation in reaction-diffusion systemscellular acidity fronts, J. Phys. Chem., 100, 14837 (1996)
[399] Tóth, A.; Horváth, D.; van Saarloos, W., Lateral instabilities of cubic autocatalytic reaction fronts in constant electric field, J. Chem. Phys., 111, 10964 (1999)
[400] Tretyakov, M. V.; Fedotov, S., On the FKPP equation with Gaussian shear advection, Physica D, 159, 190 (2001) · Zbl 0979.76083
[401] Triantafyllou, G. S.; Kupfer, K.; Bers, A., Absolute instabilities and self-sustained oscillations in the wakes of circular cylinders, Phys. Rev. Lett., 59, 1914 (1987)
[402] Tripathy, G.; van Saarloos, W., Fluctuation and relaxation properties of pulled frontsa possible scenario for non-KPZ behavior, Phys. Rev. Lett., 85, 3556 (2000), Erratum: 87 (2001) 049902
[403] Tripathy, G.; Rocco, A.; Casademunt, J.; van Saarloos, W., The universality class of fluctuating pulled fronts, Phys. Rev. Lett., 86, 5215 (2001)
[404] Tsameret, A.; Steinberg, V., Noise-modulated propagating pattern in a convectively unstable system, Phys. Rev. Lett., 67, 3392 (1991)
[405] Tsameret, A.; Steinberg, V., Absolute and convective instabilities and noise-sustained structures in the Couette-Taylor system with axial flow, Phys. Rev. E, 49, 1291 (1994)
[406] Tsatskis, I.; Salje, E. K.H.; Heine, V., Pattern formation during phase transitionskinetics of partially conserved order parameters and the role of gradient energies, J. Phys.: Condens. Matter, 6, 11027 (1994)
[407] Tu, Y.; Cross, M. C., Chaotic domain structure in rotating convection, Phys. Rev. Lett., 69, 2515 (1992)
[408] Uhlig, C.; Eggers, J., Singularities in cascade models of the Euler equation, Z. Phys. B, 103, 69 (1997)
[409] Valls, O. T.; Lust, L. M., Effect of noise on front propagation, Phys. Rev. B, 44, 4326 (1991)
[410] G.J. van den Berg, Dynamics and equilibria of fourth order differential equations, Thesis, Leiden, 2000.; G.J. van den Berg, Dynamics and equilibria of fourth order differential equations, Thesis, Leiden, 2000. · Zbl 1136.37301
[411] van der Eerden, J. P.; Müller-Krumbhaar, H., Dynamics coarsening of crystal surfaces by formation of macrosteps, Phys. Rev. Lett., 57, 2431 (1986)
[412] van Hecke, M.; van Saarloos, W.; Hohenberg, P. C., Comment on “absolute and convective instabilities in nonlinear systems”, Phys. Rev. Lett., 71, 2162 (1993) · Zbl 1051.76558
[413] van Hecke, M.; Hohenberg, P. C.; van Saarloos, W., Amplitude equations for pattern forming systems, (van Beijeren, H.; Ernst, M. H., Fundamental Problems in Statistical Mechanics VIII (1994), North-Holland: North-Holland Amsterdam) · Zbl 1051.76558
[414] van Hecke, M.; de Wit, E.; van Saarloos, W., Coherent and incoherent drifting pulse dynamics in a complex Ginzburg-Landau equation, Phys. Rev. Lett., 75, 3830 (1995)
[415] van Hecke, M.; van Saarloos, W., Convection in rotating annuliGinzburg-Landau equations with tunable coefficients, Phys. Rev. E, 55, R1259 (1997)
[416] van Hecke, M., Building blocks of spatiotemporal intermittency, Phys. Rev. Lett., 80, 1896 (1998)
[417] van Hecke, M.; Storm, C.; van Saarloos, W., Sources, sinks and wavenumber selection in coupled CGL equations and experimental implications for counter-propagating wave systems, Physica D, 134, 1 (1999) · Zbl 0964.76029
[418] van Hecke, M.; Howard, M., Ordered and self-disordered dynamics of holes and defects in the one-dimensional complex Ginzburg-Landau equation, Phys. Rev. Lett., 86, 2018 (2001)
[419] van Hecke, M.; Howard, M., Ordered and self-disordered dynamics of holes and defects in the one-dimensional complex Ginzburg-Landau equation, Phys. Rev. Lett., 86, 2018 (2001)
[420] van Saarloos, W., Front propagation into unstable statesmarginal stability as a dynamical mechanism for velocity selection, Phys. Rev. A, 37, 211-229 (1988)
[421] van Saarloos, W., Front propagation into unstable states IIlinear versus nonlinear marginal stability and rate of convergence, Phys. Rev. A, 39, 6367 (1989)
[422] van Saarloos, W., (Busse, F. H.; Kramer, L., Nonlinear Evolution of Spatio-Temporal Structures in Continuous Media (1990), Plenum: Plenum New York)
[423] van Saarloos, W.; Hohenberg, P. C., Pulses and fronts in the complex Ginzburg-Landau equation near a subcritical bifurcation, Phys. Rev. Lett., 64, 749 (1990)
[424] van Saarloos, W.; Hohenberg, P. C., Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equations, Physica D, 56, 303 (1992), [Errata: Physica D 61 (1993) 209] · Zbl 0763.35088
[425] van Saarloos, W.; Caroli, B.; Caroli, C., On the stability of low-anisotropy dendrites, J. Phys. I, 3, 26 (1993)
[426] van Saarloos, W., The complex Ginzburg-Landau equation for beginners, (Cladis, P. E.; Palffy-Muhoray, P., Proceedings of the Santa Fe Workshop on “Spatio-Temporal Patterns in Nonequilibrium Complex Systems” (1994), Addison-Wesley: Addison-Wesley Chicago)
[427] van Saarloos, W.; van Hecke, M.; Hołyst, R., Front propagation into unstable and metastable states in smectic \(C^*\) liquid crystalslinear and nonlinear marginal stability analysis, Phys. Rev. E, 52, 1773 (1995)
[428] van Saarloos, W., Three basic issues concerning interface dynamics in nonequilibrium pattern formation, Phys. Rep., 301, 9 (1998)
[429] W. van Saarloos, unpublished.; W. van Saarloos, unpublished.
[430] van Zon, R.; van Beijeren, H.; Dellago, Ch., Largest Lyapunov exponent for many-particle systems at low densities, Phys. Rev. Lett., 80, 2035 (1998)
[431] Vince, J. M.; Dubois, M., Hot-wire below the free surface of a liquid—structural and dynamic properties of a secondary instability, Europhys. Lett., 20, 505 (1992)
[432] Vince, J. M.; Dubois, M., Critical properties of convective waves in a one-dimensional system, Physica D, 102, 93 (1997) · Zbl 0897.76032
[433] Vitello, P. A.; Penetrante, B. M.; Bardsley, J. N., Simulation of negative-streamer dynamics in nitrogen, Phys. Rev. E, 49, 5574 (1994)
[434] Volpert, A. I.; Volpert, V. A.; Volpert, V. A., Traveling Wave Solutions of Parabolic Systems (1994), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0835.35048
[435] Walgraef, D., Spatio-Temporal Pattern Formation, with Examples in Physics, Chemistry and Materials Science (1996), Springer: Springer New York
[436] Wang, X. Y.; Fan, S.; Kyu, T., Complete and exact solutions of a class of nonlinear diffusion equations and problem of velocity selection, Phys. Rev. E, 56, R4931 (1997)
[437] Wijngaarden, R. J.; Heeck, K.; Welling, M.; Limburg, R.; Pannetier, M.; van Zetten, K.; Roorda, V. L.G.; Voorwinden, A. R., Fast imaging polarimeter for magneto-optical investigations, Rev. Sci. Instrum., 72, 2661 (2001)
[438] Williams, E. D.; Fu, E.; Yang, Y.-N.; Kandel, D.; Weeks, J. D., Measurement of the anisotropy ratio during current-induced step bunching, Surf. Sci., 336, L746 (1995)
[439] Williams, F. A., Combustion Theory (1985), Benjamin/Cummings: Benjamin/Cummings Menlo Park
[440] Wiltzius, P.; Bates, F. S.; Heffner, W. R., Spinodal decomposition in isotropic polymer mixtures, Phys. Rev. Lett., 60, 1538 (1988)
[441] Worledge, D.; Knowloch, E.; Tobias, S.; Procoto, M. R.E., Dynamo waves in semi-infinite and finite domains, P. R. Soc. London A, 119 (1997)
[442] Xin, J., Front propagation in heterogeneous media, SIAM Rev., 42, 161 (2000) · Zbl 0951.35060
[443] J. Xin, KPP front speeds in random shears and the parabolic Anderson problem, Methods Appl. Anal. (2003), to appear.; J. Xin, KPP front speeds in random shears and the parabolic Anderson problem, Methods Appl. Anal. (2003), to appear. · Zbl 1052.35099
[444] Xu, J. J., Interfacial Wave Theory of Pattern Formation (1998), Springer: Springer Berlin
[445] Yakhot, V., Large-scale properties of unstable systems governed by the Kuramoto-Sivashinsky equation, Phys. Rev. A, 24, 642 (1981)
[446] Yang, X.; Zebib, A., Absolute and convective instability of a cylindrical wake, Phys. Fluids A, 1, 689 (1989)
[447] Yang, Z. J., Traveling-wave solutions to nonlinear evolution and wave-equations, J. Phys. A, 27, 2837 (1994) · Zbl 0837.35034
[448] Zaleski, S., Wavelength selection in one-dimensional cellular structures, Physica D, 34, 427 (1989)
[449] Zeldovich, Ya. B.; Barenblatt, G. I.; Librovich, V. B.; Makhviladze, G. M., The Mathematical Theory of Combustion and Explosions (1985), Consultants Bureau: Consultants Bureau New York
[450] Zimmermann, W., Propagating fronts near a Lifshitz point, Phys. Rev. Lett., 66, 1546 (1991)
[451] Zocchi, G.; Tabeling, P.; Ben Amar, M., Saffman-Taylor plumes, Phys. Rev. Lett., 69, 601 (1992)
[452] Majumdar, S. N.; Kaprivsky, P. L., Extreme value statistics and traveling fronts: Application to computer science, Phys. Rev. E, 65, 036127 (2002)
[453] Majumdar, S. N., Traveling front solutions to directed diffusion-limited aggregation, digital search trees, and the Lempel-Ziv data compression algorithm, Phys. Rev. E, 68, 026103 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.