×

Webs and posets. (English) Zbl 1333.81442

Summary: The non-Abelian exponentiation theorem has recently been generalised to correlators of multiple Wilson line operators. The perturbative expansions of these correlators exponentiate in terms of sets of diagrams called webs, which together give rise to colour factors corresponding to connected graphs. The colour and kinematic degrees of freedom of individual diagrams in a web are entangled by mixing matrices of purely combinatorial origin. In this paper we relate the combinatorial study of these matrices to properties of partially ordered sets (posets), and hence obtain explicit solutions for certain families of web-mixing matrix, at arbitrary order in perturbation theory. We also provide a general expression for the rank of a general class of mixing matrices, which governs the number of independent colour factors arising from such webs. Finally, we use the poset language to examine a previously conjectured sum rule for the columns of web-mixing matrices which governs the cancellation of the leading subdivergences between diagrams in the web. Our results, when combined with parallel developments in the evaluation of kinematic integrals, offer new insights into the all-order structure of infrared singularities in non-Abelian gauge theories.

MSC:

81V35 Nuclear physics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] I.Y. Arefeva, Quantum contour field equations, Phys. Lett.B 93 (1980) 347 [INSPIRE]. · doi:10.1016/0370-2693(80)90529-8
[2] A.M. Polyakov, Gauge fields as rings of glue, Nucl. Phys.B 164 (1980) 171 [INSPIRE]. · doi:10.1016/0550-3213(80)90507-6
[3] V. Dotsenko and S. Vergeles, Renormalizability of phase factors in the non-Abelian gauge theory, Nucl. Phys.B 169 (1980) 527 [INSPIRE]. · doi:10.1016/0550-3213(80)90103-0
[4] R.A. Brandt, F. Neri and M.-A. Sato, Renormalization of loop functions for all loops, Phys. Rev.D 24 (1981) 879 [INSPIRE].
[5] G. Korchemsky and A. Radyushkin, Loop space formalism and renormalization group for the infrared asymptotics of QCD, Phys. Lett.B 171 (1986) 459 [INSPIRE]. · doi:10.1016/0370-2693(86)91439-5
[6] S. Ivanov, G. Korchemsky and A. Radyushkin, Infrared asymptotics of perturbative QCD: contour gauges, Sov. J. Nucl. Phys.44 (1986) 145 [Yad. Fiz.44 (1986) 230] [INSPIRE].
[7] G. Korchemsky and A. Radyushkin, Infrared asymptotics of perturbative QCD: renormalization properties of the Wilson loops in higher orders of perturbation theory, Sov. J. Nucl. Phys.44 (1986) 877 [Yad. Fiz.44 (1986) 1351] [INSPIRE].
[8] G. Korchemsky and A. Radyushkin, Infrared asymptotics of perturbative QCD. Quark and gluon propagators, Sov. J. Nucl. Phys.45 (1987) 127 [Yad. Fiz.45 (1987) 198] [INSPIRE].
[9] G. Korchemsky and A. Radyushkin, Infrared asymptotics of perturbative QCD. Vertex functions, Sov. J. Nucl. Phys.45 (1987) 910 [Yad. Fiz.45 (1987) 1466] [INSPIRE].
[10] G. Korchemsky and A. Radyushkin, Renormalization of the Wilson loops beyond the leading order, Nucl. Phys.B 283 (1987) 342 [INSPIRE]. · doi:10.1016/0550-3213(87)90277-X
[11] G. Korchemsky, Sudakov form-factor in QCD, Phys. Lett.B 220 (1989) 629 [INSPIRE]. · doi:10.1016/0370-2693(89)90799-5
[12] G. Korchemsky, Asymptotics of the Altarelli-Parisi-Lipatov evolution kernels of parton distributions, Mod. Phys. Lett.A 4 (1989) 1257 [INSPIRE]. · doi:10.1142/S0217732389001453
[13] J.C. Collins, Sudakov form-factors, Adv. Ser. Direct. High Energy Phys.5 (1989) 573 [hep-ph/0312336] [INSPIRE]. · Zbl 0961.81525 · doi:10.1142/9789814503266_0006
[14] G. Korchemsky and A. Radyushkin, Infrared factorization, Wilson lines and the heavy quark limit, Phys. Lett.B 279 (1992) 359 [hep-ph/9203222] [INSPIRE]. · doi:10.1016/0370-2693(92)90405-S
[15] N. Kidonakis, G. Oderda and G.F. Sterman, Evolution of color exchange in QCD hard scattering, Nucl. Phys.B 531 (1998) 365 [hep-ph/9803241] [INSPIRE]. · doi:10.1016/S0550-3213(98)00441-6
[16] N. Kidonakis and G.F. Sterman, Resummation for QCD hard scattering, Nucl. Phys.B 505 (1997) 321 [hep-ph/9705234] [INSPIRE]. · doi:10.1016/S0550-3213(97)00506-3
[17] N. Kidonakis and G.F. Sterman, Subleading logarithms in QCD hard scattering, Phys. Lett.B 387 (1996) 867 [INSPIRE]. · doi:10.1016/0370-2693(96)01080-5
[18] N. Kidonakis, Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution, Phys. Rev.D 82 (2010) 114030 [arXiv:1009.4935] [INSPIRE].
[19] J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys.B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE]. · Zbl 1219.81191 · doi:10.1016/j.nuclphysb.2007.11.007
[20] B. Basso, G. Korchemsky and J. Kotanski, Cusp anomalous dimension in maximally supersymmetric Yang-Mills theory at strong coupling, Phys. Rev. Lett.100 (2008) 091601 [arXiv:0708.3933] [INSPIRE]. · Zbl 1228.81206 · doi:10.1103/PhysRevLett.100.091601
[21] L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP06 (2007) 064 [arXiv:0705.0303] [INSPIRE]. · doi:10.1088/1126-6708/2007/06/064
[22] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys.313 (2012) 71 [arXiv:0712.2824] [INSPIRE]. · Zbl 1257.81056 · doi:10.1007/s00220-012-1485-0
[23] N. Drukker, Integrable Wilson loops, JHEP10 (2013) 135 [arXiv:1203.1617] [INSPIRE]. · Zbl 1342.83237 · doi:10.1007/JHEP10(2013)135
[24] Y.-T. Chien, M.D. Schwartz, D. Simmons-Duffin and I.W. Stewart, Jet physics from static charges in AdS, Phys. Rev.D 85 (2012) 045010 [arXiv:1109.6010] [INSPIRE].
[25] I. Cherednikov, T. Mertens and F. Van der Veken, Cusped light-like Wilson loops in gauge theories, Phys. Part. Nucl.44 (2013) 250 [arXiv:1210.1767] [INSPIRE]. · doi:10.1134/S106377961302010X
[26] I. Cherednikov, T. Mertens and F. Van der Veken, Evolution of cusped light-like Wilson loops and geometry of the loop space, Phys. Rev.D 86 (2012) 085035 [arXiv:1208.1631] [INSPIRE].
[27] J.M. Henn and T. Huber, The four-loop cusp anomalous dimension in \(\mathcal{N} = 4\) super Yang-Mills and analytic integration techniques for Wilson line integrals, JHEP09 (2013) 147 [arXiv:1304.6418] [INSPIRE]. · doi:10.1007/JHEP09(2013)147
[28] S.G. Naculich and H.J. Schnitzer, Eikonal methods applied to gravitational scattering amplitudes, JHEP05 (2011) 087 [arXiv:1101.1524] [INSPIRE]. · Zbl 1296.83028 · doi:10.1007/JHEP05(2011)087
[29] C.D. White, Factorization properties of soft graviton amplitudes, JHEP05 (2011) 060 [arXiv:1103.2981] [INSPIRE]. · Zbl 1296.83030 · doi:10.1007/JHEP05(2011)060
[30] R. Akhoury, R. Saotome and G. Sterman, Collinear and soft divergences in perturbative quantum gravity, Phys. Rev.D 84 (2011) 104040 [arXiv:1109.0270] [INSPIRE].
[31] D. Miller and C. White, The gravitational cusp anomalous dimension from AdS space, Phys. Rev.D 85 (2012) 104034 [arXiv:1201.2358] [INSPIRE].
[32] M. Beneke and G. Kirilin, Soft-collinear gravity, JHEP09 (2012) 066 [arXiv:1207.4926] [INSPIRE]. · Zbl 1398.83031 · doi:10.1007/JHEP09(2012)066
[33] E. Gardi and L. Magnea, Infrared singularities in QCD amplitudes, Nuovo Cim.C 32 (2009) 137 [arXiv:0908.3273] [INSPIRE].
[34] J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of hard processes in QCD, Adv. Ser. Direct. High Energy Phys.5 (1988) 1 [hep-ph/0409313] [INSPIRE]. · doi:10.1142/9789814503266_0001
[35] G. Korchemsky and G. Marchesini, Structure function for large x and renormalization of Wilson loop, Nucl. Phys.B 406 (1993) 225 [hep-ph/9210281] [INSPIRE]. · doi:10.1016/0550-3213(93)90167-N
[36] G. Korchemsky and G. Marchesini, Resummation of large infrared corrections using Wilson loops, Phys. Lett.B 313 (1993) 433 [INSPIRE]. · doi:10.1016/0370-2693(93)90015-A
[37] S. Catani, M.L. Mangano, P. Nason and L. Trentadue, The resummation of soft gluons in hadronic collisions, Nucl. Phys.B 478 (1996) 273 [hep-ph/9604351] [INSPIRE]. · doi:10.1016/0550-3213(96)00399-9
[38] G. Oderda, Dijet rapidity gaps in photoproduction from perturbative QCD, Phys. Rev.D 61 (2000) 014004 [hep-ph/9903240] [INSPIRE].
[39] R. Bonciani, S. Catani, M.L. Mangano and P. Nason, NLL resummation of the heavy quark hadroproduction cross-section, Nucl. Phys.B 529 (1998) 424 [Erratum ibid.B 803 (2008) 234] [hep-ph/9801375] [INSPIRE]. · doi:10.1016/S0550-3213(98)00335-6
[40] M. Beneke, P. Falgari and C. Schwinn, Soft radiation in heavy-particle pair production: all-order colour structure and two-loop anomalous dimension, Nucl. Phys.B 828 (2010) 69 [arXiv:0907.1443] [INSPIRE]. · Zbl 1203.81165 · doi:10.1016/j.nuclphysb.2009.11.004
[41] M. Beneke, M. Czakon, P. Falgari, A. Mitov and C. Schwinn, Threshold expansion of the \(gg\left( {q\overline{q}} \right)\to Q\overline{Q}+X\) cross section at \(\mathcal{O}\left( {\alpha_s^4} \right) \), Phys. Lett.B 690 (2010) 483 [arXiv:0911.5166] [INSPIRE]. · doi:10.1016/j.physletb.2010.05.038
[42] V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Renormalization-group improved predictions for top-quark pair production at hadron colliders, JHEP09 (2010) 097 [arXiv:1003.5827] [INSPIRE]. · Zbl 1291.81378 · doi:10.1007/JHEP09(2010)097
[43] M. Czakon, P. Fiedler and A. Mitov, The total top quark pair production cross-section at hadron colliders through \(\mathcal{O}\left( {\alpha_S^4} \right) \), Phys. Rev. Lett.110 (2013) 252004 [arXiv:1303.6254] [INSPIRE]. · doi:10.1103/PhysRevLett.110.252004
[44] C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → X(sγ) in effective field theory, Phys. Rev.D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
[45] C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev.D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
[46] C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett.B 516 (2001) 134 [hep-ph/0107001] [INSPIRE]. · Zbl 0971.81569 · doi:10.1016/S0370-2693(01)00902-9
[47] C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev.D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
[48] C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev.D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].
[49] T. Becher and M. Neubert, Threshold resummation in momentum space from effective field theory, Phys. Rev. Lett.97 (2006) 082001 [hep-ph/0605050] [INSPIRE]. · doi:10.1103/PhysRevLett.97.082001
[50] T. Becher, M. Neubert and B.D. Pecjak, Factorization and momentum-space resummation in deep-inelastic scattering, JHEP01 (2007) 076 [hep-ph/0607228] [INSPIRE]. · doi:10.1088/1126-6708/2007/01/076
[51] T. Becher, M. Neubert and G. Xu, Dynamical threshold enhancement and resummation in Drell-Yan production, JHEP07 (2008) 030 [arXiv:0710.0680] [INSPIRE]. · doi:10.1088/1126-6708/2008/07/030
[52] D. Yennie, S.C. Frautschi and H. Suura, The infrared divergence phenomena and high-energy processes, Annals Phys.13 (1961) 379 [INSPIRE]. · doi:10.1016/0003-4916(61)90151-8
[53] G.F. Sterman, Summation of large corrections to short distance hadronic cross-sections, Nucl. Phys.B 281 (1987) 310 [INSPIRE]. · doi:10.1016/0550-3213(87)90258-6
[54] S. Catani and L. Trentadue, Resummation of the QCD perturbative series for hard processes, Nucl. Phys.B 327 (1989) 323 [INSPIRE]. · doi:10.1016/0550-3213(89)90273-3
[55] E. Laenen, G. Stavenga and C.D. White, Path integral approach to eikonal and next-to-eikonal exponentiation, JHEP03 (2009) 054 [arXiv:0811.2067] [INSPIRE]. · doi:10.1088/1126-6708/2009/03/054
[56] M.G. Sotiropoulos and G.F. Sterman, Color exchange in near forward hard elastic scattering, Nucl. Phys.B 419 (1994) 59 [hep-ph/9310279] [INSPIRE]. · doi:10.1016/0550-3213(94)90357-3
[57] G.P. Korchemsky, On near forward high-energy scattering in QCD, Phys. Lett.B 325 (1994) 459 [hep-ph/9311294] [INSPIRE]. · doi:10.1016/0370-2693(94)90040-X
[58] I. Korchemskaya and G. Korchemsky, High-energy scattering in QCD and cross singularities of Wilson loops, Nucl. Phys.B 437 (1995) 127 [hep-ph/9409446] [INSPIRE]. · doi:10.1016/0550-3213(94)00553-Q
[59] I. Korchemskaya and G. Korchemsky, Evolution equation for gluon Regge trajectory, Phys. Lett.B 387 (1996) 346 [hep-ph/9607229] [INSPIRE]. · doi:10.1016/0370-2693(96)01016-7
[60] I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys.B 463 (1996) 99 [hep-ph/9509348] [INSPIRE]. · doi:10.1016/0550-3213(95)00638-9
[61] Y.V. Kovchegov, Non-Abelian Weizsacker-Williams field and a two-dimensional effective color charge density for a very large nucleus, Phys. Rev.D 54 (1996) 5463 [hep-ph/9605446] [INSPIRE].
[62] I. Balitsky, High-energy QCD and Wilson lines, hep-ph/0101042 [INSPIRE]. · Zbl 1025.81503
[63] I. Balitsky and G.A. Chirilli, High-energy amplitudes in N = 4 SYM in the next-to-leading order, Phys. Lett.B 687 (2010) 204 [arXiv:0911.5192] [INSPIRE]. · doi:10.1016/j.physletb.2010.02.084
[64] J. Jalilian-Marian, A. Kovner, L.D. McLerran and H. Weigert, The intrinsic glue distribution at very small x, Phys. Rev.D 55 (1997) 5414 [hep-ph/9606337] [INSPIRE].
[65] E. Gardi, J. Kuokkanen, K. Rummukainen and H. Weigert, Running coupling and power corrections in nonlinear evolution at the high-energy limit, Nucl. Phys.A 784 (2007) 282 [hep-ph/0609087] [INSPIRE]. · doi:10.1016/j.nuclphysa.2006.12.004
[66] V. Del Duca, C. Duhr, E. Gardi, L. Magnea and C.D. White, An infrared approach to Reggeization, Phys. Rev.D 85 (2012) 071104 [arXiv:1108.5947] [INSPIRE].
[67] V. Del Duca, C. Duhr, E. Gardi, L. Magnea and C.D. White, The infrared structure of gauge theory amplitudes in the high-energy limit, JHEP12 (2011) 021 [arXiv:1109.3581] [INSPIRE]. · Zbl 1306.81333 · doi:10.1007/JHEP12(2011)021
[68] Y.V. Kovchegov and E. Levin, Quantum chromodynamics at high energy, Cambridge Univ. Pr., Cambridge U.K. (2012) [INSPIRE]. · Zbl 1271.81005
[69] A.H. Mueller, Soft gluons in the infinite momentum wave function and the BFKL Pomeron, Nucl. Phys.B 415 (1994) 373 [INSPIRE]. · doi:10.1016/0550-3213(94)90116-3
[70] S. Melville, S. Naculich, H. Schnitzer and C. White, Wilson line approach to gravity in the high energy limit, arXiv:1306.6019 [INSPIRE].
[71] R. Akhoury, R. Saotome and G. Sterman, High energy scattering in perturbative quantum gravity at next to leading power, arXiv:1308.5204 [INSPIRE].
[72] J. Ware, R. Saotome and R. Akhoury, Construction of an asymptotic S matrix for perturbative quantum gravity, JHEP10 (2013) 159 [arXiv:1308.6285] [INSPIRE]. · doi:10.1007/JHEP10(2013)159
[73] J. Gatheral, Exponentiation of eikonal cross-sections in non-Abelian gauge theories, Phys. Lett.B 133 (1983) 90 [INSPIRE]. · doi:10.1016/0370-2693(83)90112-0
[74] J. Frenkel and J. Taylor, Non-Abelian eikonal exponentiation, Nucl. Phys.B 246 (1984) 231 [INSPIRE]. · doi:10.1016/0550-3213(84)90294-3
[75] G.F. Sterman, Infrared divergences in perturbative QCD (talk), AIP Conf. Proc.74 (1981) 22 [INSPIRE]. · doi:10.1063/1.33099
[76] S.M. Aybat, L.J. Dixon and G.F. Sterman, The two-loop anomalous dimension matrix for soft gluon exchange, Phys. Rev. Lett.97 (2006) 072001 [hep-ph/0606254] [INSPIRE]. · Zbl 1228.81258 · doi:10.1103/PhysRevLett.97.072001
[77] S.M. Aybat, L.J. Dixon and G.F. Sterman, The two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole, Phys. Rev.D 74 (2006) 074004 [hep-ph/0607309] [INSPIRE].
[78] A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of scattering amplitudes with massive partons, Phys. Rev. Lett.103 (2009) 201601 [arXiv:0907.4791] [INSPIRE]. · doi:10.1103/PhysRevLett.103.201601
[79] A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of massive scattering amplitudes in non-Abelian gauge theories, JHEP11 (2009) 062[arXiv:0908.3676] [INSPIRE]. · doi:10.1088/1126-6708/2009/11/062
[80] A. Mitov, G.F. Sterman and I. Sung, Computation of the soft anomalous dimension matrix in coordinate space, Phys. Rev.D 82 (2010) 034020 [arXiv:1005.4646] [INSPIRE].
[81] T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett.102 (2009) 162001 [arXiv:0901.0722] [INSPIRE]. · doi:10.1103/PhysRevLett.102.162001
[82] T. Becher and M. Neubert, On the structure of infrared singularities of gauge-theory amplitudes, JHEP06 (2009) 081 [Erratum ibid.11 (2013) 024] [arXiv:0903.1126] [INSPIRE]. · doi:10.1088/1126-6708/2009/06/081
[83] E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP03 (2009) 079 [arXiv:0901.1091] [INSPIRE]. · doi:10.1088/1126-6708/2009/03/079
[84] L.J. Dixon, E. Gardi and L. Magnea, On soft singularities at three loops and beyond, JHEP02 (2010) 081 [arXiv:0910.3653] [INSPIRE]. · Zbl 1270.81217 · doi:10.1007/JHEP02(2010)081
[85] V. Ahrens, M. Neubert and L. Vernazza, Structure of infrared singularities of gauge-theory amplitudes at three and four loops, JHEP09 (2012) 138 [arXiv:1208.4847] [INSPIRE]. · doi:10.1007/JHEP09(2012)138
[86] S.G. Naculich, H. Nastase and H.J. Schnitzer, All-loop infrared-divergent behavior of most-subleading-color gauge-theory amplitudes, JHEP04 (2013) 114 [arXiv:1301.2234] [INSPIRE]. · Zbl 1342.81606 · doi:10.1007/JHEP04(2013)114
[87] S. Caron-Huot, When does the gluon reggeize?, arXiv:1309.6521 [INSPIRE].
[88] E. Gardi, E. Laenen, G. Stavenga and C.D. White, Webs in multiparton scattering using the replica trick, JHEP11 (2010) 155 [arXiv:1008.0098] [INSPIRE]. · Zbl 1294.81278 · doi:10.1007/JHEP11(2010)155
[89] E. Gardi and C.D. White, General properties of multiparton webs: proofs from combinatorics, JHEP03 (2011) 079 [arXiv:1102.0756] [INSPIRE]. · Zbl 1301.81297 · doi:10.1007/JHEP03(2011)079
[90] E. Gardi, J.M. Smillie and C.D. White, On the renormalization of multiparton webs, JHEP09 (2011) 114 [arXiv:1108.1357] [INSPIRE]. · Zbl 1301.81296 · doi:10.1007/JHEP09(2011)114
[91] E. Gardi, J.M. Smillie and C.D. White, The non-Abelian exponentiation theorem for multiple Wilson lines, JHEP06 (2013) 088 [arXiv:1304.7040] [INSPIRE]. · Zbl 1342.81676 · doi:10.1007/JHEP06(2013)088
[92] A. Mitov, G. Sterman and I. Sung, Diagrammatic exponentiation for products of Wilson lines, Phys. Rev.D 82 (2010) 096010 [arXiv:1008.0099] [INSPIRE].
[93] E. Gardi, From webs to polylogarithms, arXiv:1310.5268 [INSPIRE].
[94] G. Falcioni, E. Gardi, M. Harley, L. Magnea and C.D. White, Calculating three-loop webs, in preparation.
[95] M. Dukes, E. Gardi, E. Steingrimsson and C.D. White, Web worlds, web-colouring matrices and web-mixing matrices, J. Comb. Theory Ser.A 120 (2013) 1012 [arXiv:1301.6576] [INSPIRE]. · Zbl 1277.05155 · doi:10.1016/j.jcta.2013.02.001
[96] V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys.B 571 (2000) 51 [hep-ph/9910563] [INSPIRE]. · doi:10.1016/S0550-3213(99)00809-3
[97] D.R. Mazur, Combinatorics: a guided tour, Mathematical Association of America, U.S.A. (2010). · Zbl 1187.05001
[98] G. Brightwell and P. Winkler, Counting linear extensions, Order8 (1991) 225. · Zbl 0759.06001 · doi:10.1007/BF00383444
[99] B. Sury, T. Wang and F.Z. Zhao, Identities involving reciprocals of binomial coefficients, J. Integer Seq.7 (2004) 04.2.8. · Zbl 1069.11008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.