×

Modeling of the turbulent motion of particles in a vertical channel. (English. Russian original) Zbl 1200.76096

Fluid Dyn. 41, No. 4, 531-544 (2006); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2006, No. 4, 50-65 (2006).
Summary: The results of modeling of the statistical parameters of a turbulent particle motion in a vertical plane channel are presented. The model is based on a kinetic equation for the particle velocity probability density function. The results are compared with direct numerical simulation.

MSC:

76F55 Statistical turbulence modeling
76F25 Turbulent transport, mixing
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] X. Pialat, O. Simonin, and P. Villedieu, ”Direct coupling between Lagrangian and Eulerian approaches in turbulent gas-particle flows,” in: Proc. ASME Fluids Engng. Summer Conf. FEDS2005-77078._Houston, USA (2005).
[2] M. Armenio, U. Piomelli, and V. Fiorotto, ”Effect of subgrid scales on particle motion,” Phys Fluids, 11, No. 10, 3030–3042 (1999). · Zbl 1149.76308 · doi:10.1063/1.870162
[3] M. Boivin, O. Simonin, and K. D. Squires, ”On the prediction of gas-solid flows with two-way coupling using large-eddy simulation,” Phys. Fluids, 12, No. 8, 2080–2090 (2000). · Zbl 1184.76064 · doi:10.1063/1.870453
[4] Y. Yamamoto, M. Potthoff, T. Tanaka, T. Kajishima, and Y. Tsuji, ”Large-eddy simulation of turbulent gas-particle flow in a vertical channel: effect of considering inter-particle collisions,” J. Fluid Mech., 442, 303–334 (2001). · Zbl 1004.76513 · doi:10.1017/S0022112001005092
[5] J. G. M. Kuerten and A. W. Vreman, ”Can turbophoresis be predicted by large-eddy simulation?,” Phys. Fluids, 17, No. 1, 011701-1-011701-4 (2005). · Zbl 1187.76284
[6] O. A. Druzhinin and S. E. Elghobashi, ”Direct numerical simulation of bubble-laden turbulent flows using the two-fluid formulation,” Phys. Fluids, 10, No. 3, 685–697 (1998). · doi:10.1063/1.869594
[7] J. Ferry and S. Balachandar, ”A fast Eulerian method for disperse two-phase flow,” Int. J. Multiphase Flow, 27, 1199–1226 (2001). · Zbl 1137.76577 · doi:10.1016/S0301-9322(00)00069-0
[8] R. V. R. Pandya and F. Mashayek, ”Two-fluid large-eddy simulation approach for particle-laden turbulent flows,” Int. J. Heat Mass Transfer, 45, 4753–4759 (2002). · Zbl 1032.76576 · doi:10.1016/S0017-9310(02)00191-6
[9] P. Février, O. Simonin, and K. D. Squires, ”Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and spatially-uncorrelated random distribution: theoretical formalism and numerical study,” J. Fluid Mech., 533, 1–46 (2005). · Zbl 1101.76025
[10] M. Moreau, B. Bedat, and O. Simonin, ”From Euler-Lagrange to Euler-Euler large-eddy simulation approaches for gas-particle turbulent flows,” in: Proc. ASME Fluids Engng. Summer Conf. FEDS2005-77306. Houston, USA (2005).
[11] Y. A. Buevich, ”Statistical hydromechanics of disperse systems. P.1. Physical background and general equations,” J. Fluid Mech., 49, No. 3, 489–507 (1971). · Zbl 0225.76053 · doi:10.1017/S0022112071002222
[12] I. V. Derevich and L. I. Zaichik, ”Equation for the probability density of the particle velocity and temperature in a turbulent flow modeled by a Gaussian random field,” Prikl. Matem. Mekh., 54, No. 5, 767–774 (1990).
[13] M. W. Reeks, ”On a kinetic equation for the transport of particles in turbulent flows,” Phys. Fluids A, 3, No. 3, 446–456 (1991). · Zbl 0719.76068 · doi:10.1063/1.858101
[14] M. W. Reeks, ”On the continuum equation for dispersed particles in nonuniform flows,” Phys. Fluids A, 4, No. 6, 1290–1303 (1992). · Zbl 0781.76089 · doi:10.1063/1.858247
[15] D. C. Swailes and K.F.F. Darbyshire, ”A generalized Fokker-Planck equation for particle transport in random media,” Physica A, 242, 38–48 (1997). · doi:10.1016/S0378-4371(97)00195-7
[16] L. I. Zaichik, ”Modeling of particle motion in a nonuniform turbulent flow on the basis of an equation for the probability density function,” Prikl. Matem. Mekh., 61, No. 1, 132–138 (1997).
[17] K. E. Hyland, S. McKee, and M. W. Reeks, ”Deviation of a PDF kinetic equation for the transport of particles in turbulent flow,” J. Phys. A: Math. Gen., 32, 6169–6190 (1999). · Zbl 0962.76039 · doi:10.1088/0305-4470/32/34/305
[18] J. Pozorski and J.-P. Minier, ”Probability density function modeling of dispersed two-phase turbulent flows,” Phys. Rev. E, 59, No. 1, 855–863 (1999). · doi:10.1103/PhysRevE.59.855
[19] I. V. Derevich, ”Statistical modelling of mass transfer in turbulent two-phase dispersed flows. 1. Model development,” Int. J. Heat Mass Transfer, 43, No. 19, 3709–3723 (2000). · Zbl 0985.76039 · doi:10.1016/S0017-9310(00)00038-7
[20] R.V.R. Pandya and F. Mashyek, ”Non-isothermal dispersed phase of particles in turbulent flow,” J. Fluid Mech., 475, 205–245 (2003). · Zbl 1148.76319 · doi:10.1017/S0022112002002781
[21] V. M. Alipchenkov and L. I. Zaichik, ”Statistical model of particle motion and dispersion in an anisotropic turbulent flow,” Fluid Dyn., 39, No. 5, 735–747 (2004). · Zbl 1184.76684 · doi:10.1007/s10697-005-0007-6
[22] L. I. Zaichik, ”A statistical model of particle transport and heat transfer in turbulent shear flow, ” Phys. Fluids, 11, No. 6, 1521–1534 (1999). · Zbl 1147.76544 · doi:10.1063/1.870015
[23] D.W.I. Rouson and J.K. Eaton, ”Direct numerical simulation of particles interacting with a turbulent channel flow,” in: Proc. 7th Workshop on Two-Phase Predictions. Erlangen, Germany, (1994).
[24] Q. Wang and K. D. Squires, ”Large-eddy simulation of particle-laden turbulent channel flow,” Phys. Fluids, 8, No. 5, 1207–1223 (1996). · Zbl 1086.76032 · doi:10.1063/1.868911
[25] K. Fukugata, S. Zahrai, and F.H. Bark, ”Force balance in a turbulent particulate flow,” Int. J. Multiphase Flow, 24, 867–887 (1998). · Zbl 1121.76445 · doi:10.1016/S0301-9322(98)00014-7
[26] M. Picciotto, C. Marchioli, M. W. Reeks, and A. Soldati, ”Statistics of velocity and preferential concentration of micro-particles in boundary layer turbulence,” Nuclear Eng. Design, 235, 1239–1249 (2005). · doi:10.1016/j.nucengdes.2005.01.013
[27] M.W. Reeks, ”The transport of disperse particles in inhomogeneous turbulence,” J. Aerosol Sci., 14, No. 6, 729–739 (1983). · doi:10.1016/0021-8502(83)90055-1
[28] C. Marchioli and A. Soldati, ”Mechanisms for particle transport and segregation in a turbulent boundary layer,” J. Fluid Mech., 468, 283–315 (2002). · Zbl 1152.76401 · doi:10.1017/S0022112002001738
[29] J. Choi, K. Yeo, and C. Lee, ”Lagrangian statistics in turbulent channel flow,” Phys. Fluids, 16, 779–793 (2004). · Zbl 1186.76106 · doi:10.1063/1.1644576
[30] B. Oesterlé and L. I. Zaichik, ”On Lagrangian time scales and particle dispersionmodeling in equilibrium turbulent shear flows,” Phys. Fluids, 16, No. 9, 3374–3384 (2004). · Zbl 1187.76388 · doi:10.1063/1.1773844
[31] G. T. Csanady, ”Turbulent diffusion of heavy-particles in the atmosphere,” J. Atmos. Sci., 20, 201–208 (1963). · Zbl 0113.19604 · doi:10.1175/1520-0469(1963)020<0201:TDOHPI>2.0.CO;2
[32] L.-P. Wang and D. E. Stock, ”Dispersion of heavy particles in turbulent motion,” J. Atmos. Sci., 50, No. 13, 1897–1913 (1993). · doi:10.1175/1520-0469(1993)050<1897:DOHPBT>2.0.CO;2
[33] M. Sakiz and O. Simonin, ”Development and validation of continuum particle-wall boundary conditions using Lagrangian simulation of a vertical gas-solid channel flow,” in: Proc. 7th Int. Symp. Gas-Solid Flows. ASME/FED, Paper No. 7898 (1999).
[34] V. M. Alipchenkov, L. I. Zaichik, and O. Simonin, ”Comparison of two approaches to constructing the boundary conditions for continuum equations of particle motion in a turbulent flow,” Teplofiz. Vys. Temp., 39, No. 1, 108–114 (2001).
[35] B. L. Sawfold, ”Reynolds number effects in Lagrangian stochastic models of turbulent dispersion, ” Phys. Fluids A, 3, 1577–1586 (1991). · doi:10.1063/1.857937
[36] L. I. Zaichik, O. Simonin, and V. M. Alipchenkov, ”Two statistical models for predicting collision rates of inertial particles in homogeneous isotropic turbulence,” Phys. Fluids, 15, No. 10, 2995–3005 (2003). · Zbl 1186.76598 · doi:10.1063/1.1608014
[37] L. I. Zaichik and V. M. Alipchenkov, ”Time of interaction of colliding particles with turbulent eddies,” Teplofiz. Aeromekh., 6, No. 4, 529-537 (1999).
[38] S. Corrsin, ”Progress report on some turbulent diffusion research,” in: Advances in Geophysics. V.6, Acad. Press, New York (1959), pp. 161–184.
[39] G. A. Kallio and M. W. Reeks, ”A numerical simulation of particle deposition in turbulent boundary layer,” Int. J. Multiphase Flow, 15, No. 3, 433–446 (1989). · doi:10.1016/0301-9322(89)90012-8
[40] K. Fukagata, S. Zahrai, F. H. Bark, and S. Kondo, ”Influences of the near-wall drag correction in a Lagrangian simulation of particulate turbulent channel flow,” in: Proc. 1st Int. Symp. Turbulence and Shear Flow. 1999. Santa Barbara, USA, Begel House, New York (1999), pp. 259–264.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.