×

Additive regression for predictors of various natures and possibly incomplete Hilbertian responses. (English) Zbl 1471.62329

Summary: In this paper we consider a fully nonparametric additive regression model for responses and predictors of various natures. This includes the case of Hilbertian and incomplete (like censored or missing) responses, and continuous, nominal discrete and ordinal discrete predictors. We propose a backfitting technique that estimates this additive model, and establish the existence of the estimator and the convergence of the associated backfitting algorithm under minimal conditions. We also develop a general asymptotic theory for the estimator such as the rates of convergence and asymptotic distribution. We verify the practical performance of the proposed estimator in a simulation study. We also apply the method to various real data sets, including those for a density-valued response regressed on a mixture of continuous and nominal discrete predictors, for a compositional response regressed on a mixture of continuous and ordinal discrete predictors, and for a censored scalar response regressed on a mixture of continuous and nominal discrete predictors.

MSC:

62G08 Nonparametric regression and quantile regression
62G20 Asymptotic properties of nonparametric inference

Software:

fda (R)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aitchison, J. and Aitken, C. G. G. (1976). Multivariate binary discrimination by the kernel method. Biometrika, 63, 413-420. · Zbl 0344.62035
[2] Aliprantis, C. D. and Border, K. (2006). Infinite Dimensional Analysis: A Hitchhiker’s Guide. Springer-Verlag Berlin Heidelberg. · Zbl 1156.46001
[3] Ansley, C. F. and Kohn, R. (1994). Convergence of the backfitting algorithm for additive models. Journal of the Australian Mathematical Society (Series A), 57, 316-329. · Zbl 0813.62030
[4] Atkinson, K. and Han, W. (2009). Theoretical Numerical Analysis. Springer-Verlag New York. · Zbl 1181.47078
[5] Beltrami, E. J. (1967). On infinite-dimensional convex programs. Journal of Computer and System Sciences, 1, 323-329. · Zbl 0239.90040
[6] Bosq, D. (2000). Linear Processes in Function Spaces. Springer-Verlag New York. · Zbl 0962.60004
[7] Buja, A. (1996). What criterion for a power algorithm? In: Rieder, H. (eds.) Robust Statistics, Data Analysis, and Computer Intensive Methods. Springer-Verlag New York. · Zbl 0846.62033
[8] Cohn, D. L. (2013). Measure Theory. Birkhäuser Basel. · Zbl 1292.28002
[9] Egozcue, J. J. and Pawlowsky-Glahn, V. (2019). Compositional data: the sample space and its structure. Test, 28, 599-638. · Zbl 1428.62220
[10] Ferraty, F., Van Keilegom, I. and Vieu, P. (2012). Regression when both response and predictor are functions. Journal of Multivariate Analysis, 109, 10-28. · Zbl 1241.62054
[11] Han, K., Müller, H.-G. and Park, B. U. (2020). Additive functional regression for densities as responses. Journal of the American Statistical Association, 115, 997-1010. · Zbl 1445.62335
[12] Han, K. and Park, B. U. (2018). Smooth backfitting for error-in-variables additive models. Annals of Statistics, 46, 2216-2250. · Zbl 1404.62038
[13] Hastie, T. J. and Tibshirani, R. J. (1993). Varying-coefficient models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 55, 757-796. · Zbl 0796.62060
[14] Hron, K., Menafoglio, A., Templ, M., Hruzová, K. and Filzmoser, P. (2016). Simplicial principal component analysis for density functions in Bayes spaces. Computational Statistics and Data Analysis, 94, 330-350. · Zbl 1468.62082
[15] Jeon, J. M. and Park, B. U. (2020). Additive regression with Hilbertian responses. Annals of Statistics, 48, 2671-2697. · Zbl 1471.62328
[16] Koul, H., Susarla, V., and Van Ryzin J. (1981). Regression analysis with randomly right-censored data. Annals of Statistics, 9, 1276-1288. · Zbl 0477.62046
[17] Kundu, S., Majumdar, S. and Mukherjee, K. (2000). Central limit theorems revisited. Statistics and Probability Letters, 47, 265-275. · Zbl 0963.60016
[18] Lee, Y. K., Mammen, E. and Park, B. U. (2010). Backfitting and smooth backfitting for additive quantile models. Annals of Statistics, 38, 2857-2883. · Zbl 1200.62039
[19] Lee, Y. K., Mammen, E. and Park, B. U. (2012a). Projection-type estimation for varying coefficient regression models. Bernoulli, 18, 177-205. · Zbl 1291.62089
[20] Lee, Y. K., Mammen, E. and Park, B. U. (2012b). Flexible generalized varying coefficient regression models. Annals of Statistics, 40, 1906-1933. · Zbl 1257.62040
[21] Lian, H. (2011). Convergence of functional k-nearest neighbor regression estimate with functional responses. Electronic Journal of Statistics, 5, 31-40. · Zbl 1274.62291
[22] Linton, O. B. and Nielsen, J. P. (1995). A kernel method of estimating structured nonparametric regression based on marginal integration. Biometrika, 82, 93-100. · Zbl 0823.62036
[23] Linton, O. B., Sperich, S., and Van Keilegon, I. (2008). Estimation of a semiparametric transformation model. Annals of Statistics, 36, 686-718. · Zbl 1133.62029
[24] Lo, S.-H. and Singh, K. (1986). The product-limit estimator and the bootstrap: some asymptotic representations. Probability Theory and Related Fields, 71, 455-465. · Zbl 0561.62032
[25] Mammen, E., Linton, O. B. and Nielsen, J. P. (1999). The existence and asymptotic properties of a backfitting projection algorithm under weak conditions. Annals of Statistics, 27, 1443-1490. · Zbl 0986.62028
[26] Mammen, E. and Park, B. U. (2006). A simple smooth backfitting method for additive models. Annals of Statistics, 34, 2252-2271. · Zbl 1106.62042
[27] Marzio, M. D., Panzera, A. and Venieri, C. (2015). Non-parametric regression for compositional data. Statistical Modelling, 15, 113-133. · Zbl 07258981
[28] Masry, E. (1996). Multivariate local polynomial regression for time series: uniform strong consistency and rates. Journal of Time Series Analysis, 17, 571-599. · Zbl 0876.62075
[29] Nielsen, J. P. and Sperlich, S. (2005). Smooth backfitting in practices. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67, 43-61. · Zbl 1060.62048
[30] Opsomer, J. D. (2000). Asymptotic properties of backfitting estimators. Journal of Multivariate Analysis, 73, 166-179. · Zbl 1065.62506
[31] Opsomer, J. D. and Ruppert, D. (1997). Fitting a bivariate additive model by local polynomial regression. Annals of Statistics, 25, 186-211. · Zbl 0869.62026
[32] Pawlowsky-Glahn, V. and Buccianti, A. (2011). Compositional Data Analysis: Theory and Applications, John Wiley and Sons, Ltd., Chichester. · Zbl 1103.62111
[33] Petersen, A. and Müller, H.-G. (2016). Functional data analysis for density functions by transformation to a Hilbert space. Annals of Statistics, 44, 183-218. · Zbl 1331.62203
[34] Petersen, A. and Müller, H.-G. (2019). Wasserstein covariance for multiple random densities. Biometrika, 106, 339-351. · Zbl 1434.62089
[35] Ramsay, J. O. and Silverman, B. W. (2002). Applied Functional Data Analysis: Methods and Case Studies. Springer New York. · Zbl 1011.62002
[36] Speckman, P. (1988). Kernel smoothing in partial linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 50, 413-436. · Zbl 0671.62045
[37] Talská, R., Menafoglio, A., Machalová, J., Hron, K. and Fišerová, E. (2018). Compositional regression with functional response. Computuational Statistics and Data Analysis, 123, 66-85. · Zbl 1469.62151
[38] Tsagris, M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6, 47-57. · Zbl 1449.62152
[39] van den Boogaart, K. G., Egozcue, J. J. and Pawlowsky-Glahn, V. (2014). Bayes Hilbert spaces. Australian and New Zealand Journal of Statistics, 56, 171-194. · Zbl 1335.62025
[40] Van Neerven, J. (2008). Stochastic evolution equations. Lecture Notes of the 11th Internet Seminar, TU Delft OpenCourseWare, http://ocw.tudelft.nl.
[41] Wang, J.-G. (1987). A note on the uniform consistency of the Kaplan-Meier estimator. Annals of Statistics, 15, 1313-1316. · Zbl 0631.62043
[42] Wang, J.-L., Chiou, J.-M. and Müller, H.-G. (2016). Functional data analysis. Annual Review of Statistics and Its Application, 3, 257-295.
[43] Xia, Y. (2009). A note on the backfitting estimation of additive models. Bernoulli, 73, 1148-1153. · Zbl 1375.62007
[44] Yang, S. J., El Ghouch, A. and Van Keilegom, I. (2014). Varying coefficient models having different smoothing variables with randomly censored data. Electronic Journal of Statistics, 8, 226-252. · Zbl 1282.62108
[45] Yu, K., Mammen, E. and Park, B. U. (2011). Semi-parametric regression: Efficiency gains from modeling the nonparametric part. Bernoulli, 17, 736-748. · Zbl 1345.62046
[46] Yu, K., Park, B. U. and Mammen, E. (2008). Smooth backfitting in generalized additive models. Annals of Statistics, 36, 228-260. · Zbl 1132.62028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.