×

A characterization of dual quermassintegrals and the roots of dual Steiner polynomials. (English) Zbl 1393.52005

Summary: Let \(m \geq 1\), \((r_0 = 0, r_1, \ldots, r_m)\) be a tuple of distinct real numbers and \(n \geq 2\). We provide a characterization of those tuples \((\omega_0, \omega_1, \ldots, \omega_m)\) of real numbers such that there exist \(n\)-dimensional star bodies \(K\), \(L\) with \(\widetilde{\mathrm{W}}_{r_j}(K, L) = \omega_j\), \(j = 0, \ldots, m\), where \(\widetilde{\mathrm{W}}_r(K, L)\) denotes the \(r\)-th dual (relative) quermassintegral of \(K\) and \(L\). This may be regarded as an analogue within the dual Brunn-Minkowski theory of Shephard’s classification of quermassintegrals of two convex bodies.
It turns out that the characterization of dual quermassintegrals is related to the moment problem, and based on this relation, we also derive new determinantal inequalities among the dual quermassintegrals. Moreover, this characterization will be the key tool in order to investigate structural properties of the set of roots of dual Steiner polynomials of star bodies.

MSC:

52A30 Variants of convex sets (star-shaped, (\(m, n\))-convex, etc.)
52A39 Mixed volumes and related topics in convex geometry
30C15 Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral)
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Bernig, A., The isoperimetrix in the dual brunn-Minkowski theory, Adv. Math., 254, 1-14, (2014) · Zbl 1291.52007
[2] Böröczky, K. J.; Henk, M.; Pollehn, H., Subspace concentration of dual curvature measures, J. Differential Geom., (2018), in press · Zbl 1397.52005
[3] Burago, Yu. D.; Zalgaller, V. A., Geometric inequalities, (1988), Springer Berlin, (Russian original: 1980) · Zbl 0633.53002
[4] Dulio, P.; Gardner, R. J.; Peri, C., Characterizing the dual mixed volume via additive functionals, Indiana Univ. Math. J., 65, 1, 69-91, (2016) · Zbl 1352.52008
[5] Firey, W. J., p-means of convex bodies, Math. Scand., 10, 17-24, (1962) · Zbl 0188.27303
[6] Gardner, R. J., A positive answer to the Busemann-petty problem in three dimensions, Ann. of Math., 140, 2, 435-447, (1994) · Zbl 0826.52010
[7] Gardner, R. J., The dual brunn-Minkowski theory for bounded Borel sets: dual affine quermassintegrals and inequalities, Adv. Math., 216, 1, 358-386, (2007) · Zbl 1126.52008
[8] Gardner, R. J.; Hug, D.; Weil, W., Operations between sets in geometry, J. Eur. Math. Soc., 15, 6, 2297-2352, (2013) · Zbl 1282.52006
[9] Gardner, R. J.; Hug, D.; Weil, W., The Orlicz-brunn-Minkowski theory: a general framework, additions, and inequalities, J. Differential Geom., 97, 3, 427-476, (2014) · Zbl 1303.52002
[10] Gardner, R. J.; Koldobsky, A.; Schlumprecht, T., An analytic solution to the Busemann-petty problem on sections of convex bodies, Ann. of Math., 149, 2, 691-703, (1999) · Zbl 0937.52003
[11] Hardy, G.; Littlewood, J. E.; Pólya, G., Inequalities, (1988), Cambridge Mathematical Library, Cambridge University Press Cambridge, Reprint of the 1952 edition · Zbl 0634.26008
[12] Heine, R., Der wertvorrat der gemischten inhalte von zwei, drei und vier ebenen eibereichen, Math. Ann., 115, 115-129, (1937) · JFM 63.0673.01
[13] Henk, M.; Pollehn, H., Necessary subspace concentration conditions for the even dual Minkowski problem, Adv. Math., 323, 114-141, (2018) · Zbl 1383.52008
[14] Henk, M.; Hernández Cifre, M. A.; Saorín, E., Steiner polynomials via ultra-logconcave sequences, Commun. Contemp. Math., 14, 6, 1-16, (2012) · Zbl 1262.52003
[15] Huang, Y.; Lutwak, E.; Yang, D.; Zhang, G., Geometric measures in the dual brunn-Minkowski theory and their associated Minkowski problems, Acta Math., 216, 2, 325-388, (2016) · Zbl 1372.52007
[16] Jameson, G. J.O., Counting zeros of generalized polynomials: Descartes’ rule of signs and Laguerre’s extensions, Math. Gaz., 90, 518, 223-234, (2006)
[17] Klain, D. A., Star valuations and dual mixed volumes, Adv. Math., 121, 1, 80-101, (1996) · Zbl 0858.52003
[18] Krein, M. G.; Nudelman, A. A., The Markov moment problem and extremal problems. ideas and problems of P.L. Chebyshev and A.A. Markov and their further development, Translations of Mathematical Monographs, vol. 50, (1977), American Mathematical Society Providence, R.I.
[19] Lutwak, E., Dual mixed volumes, Pacific J. Math., 58, 2, 531-538, (1975) · Zbl 0273.52007
[20] Lutwak, E., Dual cross-sectional measures, Atti Accad. Naz. Lincei, 58, 1-5, (1975) · Zbl 0335.28007
[21] Lutwak, E., The brunn-Minkowski-firey theory, I, J. Differential Geom., 38, 1, 131-150, (1993) · Zbl 0788.52007
[22] Lutwak, E., The brunn-Minkowski-firey theory, II, Adv. Math., 118, 2, 244-294, (1996) · Zbl 0853.52005
[23] Marden, M., Geometry of polynomials, Mathematical Surveys, vol. 3, (1966), American Mathematical Society Providence, R.I. · Zbl 0173.02703
[24] Puente, R., Cyclic convex bodies and optimization moment problems, Linear Algebra Appl., 426, 2-3, 596-609, (2007) · Zbl 1146.52002
[25] Schmüdgen, K., The moment problem, Graduate Texts in Mathematics, vol. 277, (2017), Springer Cham · Zbl 1383.44004
[26] Schneider, R., Convex bodies: the brunn-Minkowski theory, (2014), Cambridge University Press Cambridge · Zbl 1287.52001
[27] Shephard, G. C., Inequalities between mixed volumes of convex sets, Mathematika, 7, 125-138, (1960) · Zbl 0108.35203
[28] Steiner, J., Über parallele flächen, Monatsber. Preuss. Akad. Wiss., 114-118, (1840), [Ges. Werke, Vol II (Reimer, Berlin, 1882) 245-308]
[29] Zhang, G., A positive solution to the Busemann-petty problem in \(\mathbb{R}^4\), Ann. of Math., 149, 2, 535-543, (1999) · Zbl 0937.52004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.