×

New volume ratio properties for convex symmetric bodies in \({\mathbb{R}}^ n\). (English) Zbl 0617.52006

Let K be any convex, centrally symmetric, bounded and absorbing set in \({\mathbb{R}}^ n\) and let \(K^*\) be the polar body of K. By a(K) denote the product of the volumes \(V(K)\cdot V(K^*)\). It is known that \(b^ 2_ n/n^{n/2}\leq a(K)\leq b^ 2_ n\), where \(b_ n\) denotes the volume of the (Euclidean) unit ball in \({\mathbb{R}}^ n\). The right hand side inequality is due to Blaschke and Santaló. It is attained precisely for ellipsoids. The left hand side inequality is due to Bambah. The authors improve this essentially by establishing the lower bound \(c^ nb^ 2_ n\), where c is an absolute positive constant (Theorem 1). This already comes very close to a conjecture of Mahler which asserts that \(4^ n/n!\) is the (optimal) lower bound. Given a normed space E with unit ball K, let v(E) denote the volume ratio \((V(K)/V(J))^{1/n}\), where j denotes John’s ellipsoid of maximal volume contained in K. For cotype-2 spaces E with cotype-2 constant C(E) the following estimate for the volume ratio is established (Theorem 2): v(E)\(\leq cC(E) (\log C(E))^ 4\). This gives an affirmative answer to a question raised by Pelczynski. Theorem 1 admits interesting applications to the Geometry of Numbers: Let K be any bounded 0-symmetric convex body in \({\mathbb{R}}^ n\) and \(K^*\) its polar body. Then there exists an absolute constant \(c_ 1\) such that either \(c_ 1n^{1/2}K\) or \(c_ 1n^{1/2}K^*\) contains a non-trivial point of the integer lattice \({\mathbb{Z}}^ n\). This result is optimal for ellipsoids. Further consequences concern successive minima, mixed volumes and harmonic analysis.
Reviewer: G.Ramharter

MSC:

52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)
11H06 Lattices and convex bodies (number-theoretic aspects)
43A25 Fourier and Fourier-Stieltjes transforms on locally compact and other abelian groups
52A40 Inequalities and extremum problems involving convexity in convex geometry
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] [A] Alexandrov, A.: On the theory of mixed volumes of convex bodies. I. Math. Sbornik2 (N5), 947-972 (1937); II. idem Math. Sbornik2 (N6) 1205-1238; III. idem Math. Sbornik3 (NI) 27-46 (1938);
[2] [Ba] Bambah., R.P.: Polar reciprocal convex bodies. Proc. Camb. Philos. Soc.51, 377-378 (1954) · Zbl 0065.15204
[3] [Be] Bernstein, D.N.: The number of roots of a system of equations. Funkts. Anal. Prilozh.9 (N3), 1-4 (1975) · Zbl 0395.60076
[4] [Bo, 1] Bourgain, J.: On Martingale transforms in finite dimensional lattices with an appendix on theK-convexity constant. Math. Nachr.119, 41-53 (1984) · Zbl 0568.42010
[5] [Bo, 2] Bourgain, J.: A remark on entropy on Abelian, groups and the uniform approximation property. Studia Math. (in press) (1987) · Zbl 0628.43003
[6] [B-M] Bourgain, J., Milman, V.D.: Sections euclidiennes et volume des corps symétriques convexes dans ? n . C.R. Acad. Sci., Paris, Sér.I, t 300,13, 435-438 (1985) · Zbl 0576.52002
[7] [B-Z] Burago, Y.D., Zalgaler, V.A.: Geometrical inequalities. Leningrad: Nauka 1980
[8] [D-M-T] Davis, W.J., Milman, V.D., Tomczak-Jaegermann, N.: The distance between certainn-dimensional Banach spaces. Israel J. Math.39, 1-15 (1982) · Zbl 0476.03055
[9] [Fe] Fenchel, W.: Inégalités quadratiques entre les volumes mixtes des corps convexes. C.R. Acad. Sci., Paris, Ser. I.,203, 647-650 (1936) · Zbl 0015.12006
[10] [F] Firey, W.M.J.: Support flags to convex bodies, Geom. Dedic2, 225-248 (1973) · Zbl 0273.52003
[11] [F-L-M] Figiel, T., Lindenstrauss, J., Milman, V.D.: The dimension of almost spherical sections of convex bodies. Acta Math.139, 53-94 (1977) · Zbl 0375.52002
[12] [F-T] Figiel, T., Tomczak-Jaegermann, N.: Projections onto Hilbertian subspaces of Banach spaces. Israel J. Math.53, 155-171 (1979) · Zbl 0427.46010
[13] [G-R] Gordon, Y., Reisner, S.: Volume estimates and applications to finite-dimensional Banach spaces. Preprint
[14] [J] John, F.: Extremum problems with inequalities as subsidiary conditions. Courant anniversary volume, pp. 187-204. New York: Interscience 1948 · Zbl 0034.10503
[15] [K] Kauchnirenko, A.G.: Polyèdres de Newton et nombres de Milnor. Invent. Math.32, 1-31 (1979) · Zbl 0328.32007
[16] [L] Lekkerkerker, C.G.: Geometry of numbers. Amsterdam: North-Holland 1969 · Zbl 0198.38002
[17] [Lew] Lewis, D.R.: Ellipsoides defined by Banach ideal norms. Mathematica26, 18-29 (1979) · Zbl 0438.46006
[18] [Lu] Lutwak, E.: On cross-sectional measures of polar reciprocal convex bodies. Geom. Dedicata1, 79-80 (1976) · Zbl 0342.52017
[19] [Ma] Mahler, K.: Ein Übertragungsprincip für konvexe Körper. Casopis Pest. Mat. Fys.68, 93-102 (1909)
[20] [Ma-P] Maurey, B., Pisier, G.: Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach. Stud. Math.58, 45-90 (1976)
[21] [Mi, 1] Milman, V.D.: Almost Euclidean quotient spaces of subspaces of finite dimensional normed spaces. Proc. Am. Math. Soc.94, 445-449 (1985) · Zbl 0581.46014
[22] [Mi, 2] Milman, V.D.: Random subspaces of proportional dimension of finite dimensional normed spaces; approach through isoperimetric inequality. Missouri Conf. 1984. Springer LNM 1166, 1985, pp. 106-116
[23] [Mi, 3] Milman, V.D.: Volume approach and iteration procedures in local theory of normed spaces. Missouri Conf. 1984, Springer LNM 1166, 1985, pp. 99-105
[24] [Mi,4] Milman, V.D.: Inégalité de Brunn-Minkowski inverse et applications à la théorie locale des espaces normés. C.R. Acad. Sci., Paris, Sér. I.,7302, 25-28 (1986) · Zbl 0604.52003
[25] [M-S] Milman, V.D., Schechtman, G.: Asymptotic theory of finite dimensional normed spaces. (Lect. Notes in Math., vol. 1200) Berlin-Heidelberg-New York: Springer 1986 · Zbl 0606.46013
[26] [P-T] Pajor, A., Tomczak-Jaegerman, N.: Nombres de Gelfand et sections euclidiennes de grande dimension. Séminaire d’Analyse fonctionnelle, 1984/85, Univ. Paris VI et VII
[27] [Pel] Pelczynski, A.: Geometry of infinite dimensional Banach spaces and operator ideals. Notes in Banach spaces, pp. 81-181. Austin and London: Univ. of Texas Press 1980
[28] [Pi, 1] Pisier, G.:K-convexity, Proceeding of Research Workshop on Banach Spaces, University of Iowa, 1981, pp. 139-151 Algo: Remarque sur un résultat non-publié de B. Maurey, Sém. d’Analyse Fonctionnelle, 1980/81, Exp. v., Ecole Polytechnique
[29] [Pi, 2] Pisier, G.: Private communications
[30] [R] Reisner, S.: Random polytopes and volume product of symmetric bodies. Math. Scand.57, 386-392 (1985) · Zbl 0593.52003
[31] [Ro] Rogalski, M.: Sur le quotient volumique d’un espace de dimension fini. Publ. Math. Univ. Pierre et Marie Curie46, C3 (1980/81)
[32] [R-S] Rogers, C.A., Shephard, G.C.: The difference body of a convex body. Arch. Math.8, 220-233 (1957) · Zbl 0082.15703
[33] [S, 1] Saint-Raymond, J.: Sur le volume des corps convexes symétriques. Séminaire d’initiation à l’analyse 1980/81, Paris VI University
[34] [S, 2] Saint-Raymond, J.: Le volume des idéaux d’opératurs classiques. Stud. Math.80, 63-75 (1984) · Zbl 0507.51015
[35] [Sa, 1] Santalo, L.A.: Un invariante afin pasa los cuerpos convexos del espacio den-dimensiones. Port. Math.8, 155-161 (1949)
[36] [Sa, 2] Santalo, L.A.: Integral geometry and geometric probability. Encyclopedia Math. and Appl., Reading, MA: Addison-Wesley 1976
[37] [Sz] Szarek, S.: On Kashin’s almost Euclidean orthogonal decomposition ofl n 1 . Bull. Acad. Pol. Sci., Ser. Sci. Math.26, 691-694 (1978) · Zbl 0395.46015
[38] [Sz-T] Szarek, S., Tomczak-Jaegermann, N.: On nearly Euclidean decompositions for some classes of Banach spaces. Compos. Math.40, 367-385 (1980) · Zbl 0432.46018
[39] [Zy] Zygmund, A.: Trigonometric series, Cambridge UP, 1959 · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.