×

On the log-Minkowski inequality for simplices and parallelepipeds. (English) Zbl 1413.52012

Summary: We study the log-Minkowski inequality for centered convex bodies when the cone-volume body is a simplex or a parallelepiped.

MSC:

52A40 Inequalities and extremum problems involving convexity in convex geometry
52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Artstein-Avidan, Shiri, Giannopoulos, Apostolos, Milman, Vitali D.: Asymptotic Geometric Analysis, Part I, Mathematical Surveys and Monographs, vol. 202. American Mathematical Society (Providence, RI (2015) · Zbl 1337.52001
[2] Barthe, Franck, Guédon, Olivier, Mendelson, Shahar, Naor, Assaf: A probabilistic approach to the geometry of the \(l^n_p\)lpn-ball. Ann. Probab. 33, 480–513 (2005) · Zbl 1071.60010
[3] Béla Bollobás and Imre Leader, Products of unconditional bodies, in: Geometric Aspects of Functional Analysis (Israel, 1992–1994), Oper. Theory Adv. Appl., vol. 77, Birkhäuser (Basel, 1995), pp. 13–24
[4] Károly, J.: Böröczky and Pál Hegedus, The cone volume measure of antipodal points. Acta Math. Hungar. 146, 449–465 (2015) · Zbl 1363.52007
[5] Károly, J.: Böröczky, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, The log-Brunn-Minkowski inequality. Adv. Math. 231, 1974–1997 (2012) · Zbl 1258.52005
[6] Károly, J.: Böröczky, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, The logarithmic Minkowski problem. J. Amer. Math. Soc. 26, 831–852 (2013) · Zbl 1272.52012
[7] Károly, J.: Böröczky, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Affine images of isotropic measures. J. Differential Geom. 99, 407–442 (2015) · Zbl 1325.28004
[8] Böröczky, Károly J., Trinh, Hai T.: The planar \(L_p\)Lp-Minkowski problem for \({0<p<1}\)0<p<1. Adv. Appl. Math. 87, 58–81 (2017) · Zbl 1376.52013
[9] Campi, Stefano, Gronchi, Paolo: The \(L^p\)Lp-Busemann-Petty centroid inequality. Adv. Math. 167, 128–141 (2002) · Zbl 1002.52005
[10] Campi, Stefano, Gronchi, Paolo: On the reverse \(L^p\)Lp-Busemann-Petty centroid inequality. Mathematika 49, 1–11 (2002) · Zbl 1056.52005
[11] Chou, Kai-Seng, Wang, Xu-Jia: The \(L_p\)Lp-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 205, 33–83 (2006) · Zbl 1245.52001
[12] Cordero-Erausquin, Dario, Fradelizi, Matthieu, Maurey, Bernard: The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems. J. Funct. Anal. 214, 410–427 (2004) · Zbl 1073.60042
[13] William, J.: Firey, \(p\)p-means of convex bodies. Math. Scand. 10, 17–24 (1962) · Zbl 0188.27303
[14] Fleury, Bruno, Guédon, Olivier, Paouris, Grigoris: A stability result for mean width of \(L_p\)Lp-centroid bodies. Adv. Math. 214, 865–877 (2007) · Zbl 1132.52012
[15] Richard J. Gardner, Geometric tomography, Encyclopedia of Mathematics and its Applications, vol. 58, 2nd ed., Cambridge University Press (Cambridge, 2006)
[16] Richard, J.: Gardner, Daniel Hug, and Wolfgang Weil, The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities. J. Differential Geom. 97, 427–476 (2014) · Zbl 1303.52002
[17] Gromov, Michail, Milman, Vitali D.: Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces. Compositio Math. 62, 263–282 (1987) · Zbl 0623.46007
[18] Peter M. Gruber, Convex and discrete geometry, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 336, Springer (Berlin, 2007)
[19] Grünbaum, Branko: Partitions of mass-distributions and of convex bodies by hyperplanes. Pacific J. Math. 10, 1257–1261 (1960) · Zbl 0101.14603
[20] Pengfei Guan and Lei Ni, Entropy and a convergence theorem for gauss curvature flow in high dimension, J. Eur. Math. Soc., in press · Zbl 1386.35180
[21] Haberl, Christoph: \(L_p\)Lp intersection bodies. Adv. Math. 217, 2599–2624 (2008) · Zbl 1140.52003
[22] Christoph Haberl and Monika Ludwig, A characterization of \(L_p\)Lp intersection bodies, Int. Math. Res. Not. (2006), Art. ID 10548, 29 pp · Zbl 1115.52006
[23] Haberl, Christoph, Parapatits, Lukas: The centro-affine Hadwiger theorem. J. Amer. Math. Soc. 27, 685–705 (2014) · Zbl 1319.52006
[24] Haberl, Christoph, Schuster, Franz E.: General \(L_p\)Lp affine isoperimetric inequalities. J. Differential Geom. 83, 1–26 (2009) · Zbl 1185.52005
[25] He, Binwu, Leng, Gangsong, Li, Kanghai: Projection problems for symmetric polytopes. Adv. Math. 207, 73–90 (2006) · Zbl 1111.52012
[26] Henk, Martin, Linke, Eva: Cone-volume measures of polytopes. Adv. Math. 253, 50–62 (2014) · Zbl 1308.52007
[27] Henk, Martin, Schürmann, Achill, Wills, Jörg M.: Ehrhart polynomials and successive minima. Mathematika 52, 1–16 (2005) · Zbl 1105.52011
[28] Huang, Yong, Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong: Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems. Acta Math. 216, 325–388 (2016) · Zbl 1372.52007
[29] Hug, Daniel, Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong: On the \(L_p\)Lp Minkowski problem for polytopes. Discrete Comput. Geom. 33, 699–715 (2005) · Zbl 1078.52008
[30] Ludwig, Monika: General affine surface areas. Adv. Math. 224, 2346–2360 (2010) · Zbl 1198.52004
[31] Monika Ludwig and Matthias Reitzner, A classification of \( \operatorname{SL}(n)\)SL(n) invariant valuations, Ann. of Math. (2), 172 (2010), 1219–1267 · Zbl 1223.52007
[32] Lutwak, Erwin: The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem. J. Differential Geom. 38, 131–150 (1993) · Zbl 0788.52007
[33] Lutwak, Erwin: The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996) · Zbl 0853.52005
[34] Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong: \(L_p\)Lp affine isoperimetric inequalities. J. Differential Geom. 56, 111–132 (2000) · Zbl 1034.52009
[35] Erwin Lutwak, Deane Yang, and Gaoyong Zhang, \(L_p\)Lp John ellipsoids, Proc. London Math. Soc. (3), 90 (2005), 497–520
[36] Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong: Orlicz centroid bodies. J. Differential Geom. 84, 365–387 (2010) · Zbl 1206.49050
[37] Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong: Orlicz projection bodies. Adv. Math. 223, 220–242 (2010) · Zbl 1437.52006
[38] Ma, Lei: A new proof of the log-Brunn-Minkowski inequality. Geom. Dedicata 177, 75–82 (2015) · Zbl 1396.52014
[39] Meyer, Mathieu, Werner, Elisabeth: On the \(p\)p-affine surface area. Adv. Math. 152, 288–313 (2000) · Zbl 0964.52005
[40] Vitali, D.: Milman and Alain Pajor, Entropy and asymptotic geometry of non-symmetric convex bodies. Adv. Math. 152, 314–335 (2000) · Zbl 0974.52004
[41] Assaf Naor, The surface measure and cone measure on the sphere of \(l_p^n\)lpn, Trans. Amer. Math. Soc., 359 (2007), 1045–1079 (electronic) · Zbl 1109.60006
[42] Naor, Assaf, Romik, Dan: Projecting the surface measure of the sphere of \(l_p^n\)lpn. Ann. Inst. H. Poincaré Probab. Statist. 39, 241–261 (2003) · Zbl 1012.60025
[43] Grigoris Paouris and Elisabeth M. Werner, Relative entropy of cone measures and \(L_p\)Lp centroid bodies, Proc. London Math. Soc. (3), 104 (2012), 253–286 · Zbl 1246.52008
[44] Saroglou, Christos: Remarks on the conjectured log-Brunn-Minkowski inequality. Geom. Dedicata 177, 353–365 (2015) · Zbl 1326.52010
[45] Rolf Schneider, Convex bodies: the Brunn–Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press (Cambridge, 2014) (expanded edition) · Zbl 1143.52002
[46] Schütt, Carsten, Werner, Elisabeth: Surface bodies and \(p\)p-affine surface area. Adv. Math. 187, 98–145 (2004) · Zbl 1089.52002
[47] Stancu, Alina: The discrete planar \(L_0\)L0-Minkowski problem. Adv. Math. 167, 160–174 (2002) · Zbl 1005.52002
[48] Stancu, Alina: On the number of solutions to the discrete two-dimensional \(L_0\)L0-Minkowski problem. Adv. Math. 180, 290–323 (2003) · Zbl 1054.52001
[49] Stancu, Alina: The necessary condition for the discrete \(L_0\)L0-Minkowski problem in \(\mathbb{R}^2\)R2. J. Geom. 88, 162–168 (2008) · Zbl 1132.52300
[50] Stancu, Alina: Centro-affine invariants for smooth convex bodies. Int. Math. Res. Not. IMRN 10, 2289–2320 (2012) · Zbl 1250.52009
[51] Stancu, Alina: The logarithmic Minkowski inequality for non-symmetric convex bodies. Adv. in Appl. Math. 73, 43–58 (2016) · Zbl 1331.52014
[52] Zhu, Guangxian: The logarithmic Minkowski problem for polytopes. Adv. Math. 262, 909–931 (2014) · Zbl 1321.52015
[53] Zhu, Guangxian: The centro-affine Minkowski problem for polytopes. J. Differential Geom. 101, 159–174 (2015) · Zbl 1331.53016
[54] Zhu, Guangxian: The \(L_p\)Lp Minkowski problem for polytopes for \(0<p<1\)0<p<1. J. Funct. Anal. 269, 1070–1094 (2015) · Zbl 1335.52023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.