×

The prolongation structure of a coupled KdV equation. (English) Zbl 1392.35247

Summary: The new coupled KdV equation proposed by Ohta and Hirota, in which the phase shift depends on the mutual positions of solitons at the initial time, is investigated in the framework of prolongation structure theory. Its Lax representation is constructed.

MSC:

35Q41 Time-dependent Schrödinger equations and Dirac equations
35B40 Asymptotic behavior of solutions to PDEs
35C08 Soliton solutions
35Q53 KdV equations (Korteweg-de Vries equations)
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wahlquist, H.D., Estabrook, F.B. Prolongation structures of nonlinear evolution equations. Journal of Mathematical Physics, 16: 1-7 (1975) · Zbl 0298.35012 · doi:10.1063/1.522396
[2] Estabrook, F.B., Wahlquist, H.D. Prolongation structures of nonlinear evolution equations. Journal of Mathematical Physics, 17: 1293-1297 (1976) · Zbl 0333.35064 · doi:10.1063/1.523056
[3] Zhao, W.Z, Bai, Y.Q., Wu, K. Generalized Inhomogeneous Heisenberg Ferromagnet Model and Generalized Nonlinear Schrödinger Equation. Physics Letters A, 3: 52-64 (2006) · Zbl 1187.82032
[4] Zhai, Y., Albeverio, S., Zhao, W.Z., Wu, K. Prolongation structure of the (2+1)-dimensional integrable Heisenberg ferromagnet model. Journal of A: Mathematical and General, 39: 2117-2126 (2006) · Zbl 1087.82024
[5] Zhang, Z.H., Deng, M., Zhao, W.Z., Wu, K. On the (2+1)-Dimensional Integrable Inhomogeneous Heisenberg Ferromagnet Equation. Journal of the Physical Society of Japan, 75: 104002 (2006) · Zbl 1223.81121 · doi:10.1143/JPSJ.75.104002
[6] DAS, C., Chowdhury, A. On the prolongation structure and integrability of HNLS equation. Chaos, Solitons Fractals, 12: 2081-2090 (2001) · Zbl 0983.35130 · doi:10.1016/S0960-0779(00)00171-5
[7] Wang, D.S., Yin, S.J., Tian, Y., Liu, Y. Integrability and bright soliton solutions to the coupled nonlinear Schrödinger equation with higher-order effects. Applied Mathematics and Computation, 229: 296-309 (2014) · Zbl 1364.35343 · doi:10.1016/j.amc.2013.12.057
[8] Karasu, A., Sakovich, S., Yurdusen, I. Integrability of Kersten-Krasil’shchik coupled KdV C mKdV equations: singularity analysis and Lax pair. Journal of Mathematical Physics, 44: 1703 (2003) · Zbl 1062.37072 · doi:10.1063/1.1558903
[9] Wang, D.S., Wei, W. Integrability and exact solutions of a two-component Korteweg-de Vries system. Math. Meth. Appl. Sci., 39: 3516-3530 (2006) · Zbl 1343.35205 · doi:10.1002/mma.3859
[10] Wang, D.S., Zhang, D.J., Yang, J. Integrable properties of the general coupled nonlinear Schrödinger equations. Applied Mathematics Letters, 23: 665-669 (2010) · Zbl 1189.35294 · doi:10.1016/j.aml.2010.02.002
[11] Bracken, P. Exterior Differential Systems Prolongations and Application to a Study of Two Nonlinear Partial Differential Equations. Acta Appl. Math., 113: 247-263 (2011) · Zbl 1211.35085 · doi:10.1007/s10440-010-9597-z
[12] Bracken, P. A geometric interpretation of prolongation by means of connections. Journal of Mathematical Physics, 51: 113502 (2010) · Zbl 1314.35012 · doi:10.1063/1.3504172
[13] Stalin, S., Senthilvelan, M. A note on the prolongation structure of the cubically nonlinear integrable Camassa-Holm type equation. Physics Letters A, 375: 3786-3788 (2011) · Zbl 1254.76029 · doi:10.1016/j.physleta.2011.08.057
[14] Ohta, Y., Hirota, R. New type of soliton equations. Phys. Soc. Japan, 76: 24-35 (2007) · Zbl 1223.35276
[15] Wang, D.S., Hu, X.H., Hu, J.P., Liu, W.M. Quantized quasi-two-dimensional Bose-Einstein condensates with spatially modulated nonlinearity. Nonlinear Analysis, 73: 270-281 (2010) · Zbl 1201.37099 · doi:10.1016/j.na.2010.03.021
[16] Dodd, R., Fordy, A. The prolongation structures of quasi-polynomial flows. R Proc. Soc. Lond A., 12: 385-389 (1982) · Zbl 0542.35069
[17] Humphreys, J.E. Introduction to Lie algebras and representation theory. Springer-Verlag, New York, 1972 · Zbl 0254.17004 · doi:10.1007/978-1-4612-6398-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.