×

Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle. (English) Zbl 1301.82072

Summary: The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.{
©2014 American Institute of Physics}

MSC:

82D80 Statistical mechanics of nanostructures and nanoparticles
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
35Q31 Euler equations
35B40 Asymptotic behavior of solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Barletti, L., Quantum fluid models for nanoelectronics, Commun. Appl. Ind. Math., 3, 1, e-417 (2012) · Zbl 1329.82134 · doi:10.1685/journal.caim.417
[2] Barletti, L.; Cintolesi, C., Derivation of isothermal quantum fluid equations with Fermi-Dirac and Bose-Einstein statistics, J. Stat. Phys., 148, 2, 353-386 (2012) · Zbl 1257.82066 · doi:10.1007/s10955-012-0535-5
[3] Barletti, L.; Frosali, G., Diffusive limit of the two-band k·p model for semiconductors, J. Stat. Phys., 139, 280-306 (2010) · Zbl 1192.82081 · doi:10.1007/s10955-010-9940-9
[4] Barletti, L.; Frosali, G.; Morandi, O.; Ehrhardt, M.; Koprucki, T., Kinetic and hydrodynamic models for multiband quantum transport in crystals, Modern Mathematical Models and Numerical Techniques for Multiband Effective Mass Approximations (2014)
[5] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 511-525 (1954) · Zbl 0055.23609 · doi:10.1103/PhysRev.94.511
[6] Bialynicki-Birula, I., Hydrodynamic form of the Weyl equation, Acta Phys. Pol. B, 26, 1201-1208 (1995) · Zbl 0966.81560
[7] Camiola, V. D.; Mascali, G.; Romano, V., Simulation of a double-gate MOSFET by a non-parabolic energy-transport subband model for semiconductors based on the maximum entropy principle, Math. Comput. Modell., 58, 321-343 (2013) · Zbl 1297.81176 · doi:10.1016/j.mcm.2012.11.007
[8] Camiola, V. D. and Romano, V., “Hydrodynamical model for charge transport in graphene,” J. Stat. Phys. (unpublished). · Zbl 1310.82052
[9] Cercignani, C., The Boltzmann Equation and its Applications (1988) · Zbl 0646.76001
[10] Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene, Rev. Mod. Phys., 81, 109-162 (2009) · doi:10.1103/RevModPhys.81.109
[11] Cheianov, V. V.; Fal’ko, V.; Altshuler, B. L., The focusing of electron flow and a Veselago lens in graphene, Science, 315, 1252-1255 (2007) · doi:10.1126/science.1138020
[12] Chen, G-Q.; Dafermos, C. M.; Feireis, E., Euler equations and related hyperbolic conservation laws, Handbook of Differential Equations: Evolutionary Equations, 2 (2005)
[13] El Hajj, R.; Méhats, F., Analysis of models for quantum transport of electrons in graphene layers, Math. Models Methods Appl. Sci. · Zbl 1300.35112 · doi:10.1142/S0218202514500213
[14] Fox, L.; Parker, I. B., Chebyshev Polynomials in Numerical Analysis (1968) · Zbl 0153.17502
[15] Jüngel, A.; Krause, S.; Pietra, P., Diffusive semiconductor moment equations using Fermi-Dirac statistics, Z. Angew. Math. Phys., 62, 4, 623-639 (2011) · Zbl 1276.82063 · doi:10.1007/s00033-010-0106-z
[16] Jüngel, A.; Zamponi, N., Two spinorial drift-diffusion models for quantum electron transport in graphene, Commun. Math. Sci., 11, 3, 807-830 (2013) · Zbl 1282.35132 · doi:10.4310/CMS.2013.v11.n3.a7
[17] La Rosa, S.; Mascali, G.; Romano, V., Exact maximum entropy closure of the hydrodynamical model for Si semiconductors: The 8-moment case, SIAM J. Appl. Math., 70, 3, 710-734 (2009) · Zbl 1197.82118 · doi:10.1137/080714282
[18] Levermore, C. D., Moment closure hierarchies for kinetic theories, J. Stat. Phys., 83, 5-6, 1021-1065 (1996) · Zbl 1081.82619 · doi:10.1007/BF02179552
[19] Lewin, L., Polylogarithms and Associated Functions (1981) · Zbl 0465.33001
[20] Lichtenberger, P.; Morandi, O.; Schürrer, F., High field transport and optical phonon scattering in graphene, Phys. Rew. B, 84, 045406-7 (2011) · doi:10.1103/PhysRevB.84.045406
[21] Lundstrom, M., Fundamentals of Carrier Transport (2000)
[22] Morandi, O., Wigner-function formalism applied to the Zener band transition in a semiconductor, Phys. Rev. B, 80, 024301-12 (2009) · doi:10.1103/PhysRevB.80.024301
[23] Morandi, O.; Schürrer, F., Wigner model for quantum transport in graphene, J. Phys. A: Math. Theor., 44, 265301 (2011) · Zbl 1223.82043 · doi:10.1088/1751-8113/44/26/265301
[24] Müller, M.; Schmalian, J.; Fritz, L., Graphene: A nearly perfect fluid, Phys. Rev. Lett., 103, 025301-4 (2009) · doi:10.1103/PhysRevLett.103.025301
[25] Svintsov, D.; Vyurkov, V.; Yurchenko, S.; Otsuji, T.; Ryzhii, V., Hydrodynamic model for electron-hole plasma in graphene, J. Appl. Phys., 111, 083715 (2012) · doi:10.1063/1.4705382
[26] Thaller, B., The Dirac Equation (1992) · Zbl 0881.47021
[27] Trovato, M.; Reggiani, L., Quantum maximum entropy principle for a system of identical particles, Phys. Rev. E, 81, 021119-11 (2010) · Zbl 1381.82012 · doi:10.1103/PhysRevE.81.021119
[28] Wood, D. C., The computation of polylogarithms (1992)
[29] Wu, N., The Maximum Entropy Method (1997) · Zbl 0872.65117
[30] Zamponi, N., Some fluid-dynamic models for quantum electron transport in graphene via entropy minimization, Kinet. Relat. Mod., 5, 1, 203-221 (2012) · Zbl 1284.82051 · doi:10.3934/krm.2012.5.203
[31] Zamponi, N.; Barletti, L., Quantum electronic transport in graphene: A kinetic and fluid-dynamical approach, Math. Methods Appl. Sci., 34, 807-818 (2011) · Zbl 1213.35353 · doi:10.1002/mma.1403
[32] We are working with dimensionless Wigner functions and the constant 1/(2πℏ)\(^2\) is necessary in order to compute physical moments.\(^4\)
[33] Although we have used the same notation for \(\textbf{ν}_⊥\) and \documentclass[12pt]{minimal}\( \begin{document}{\bm w}_\perp\end{document} \), the former denotes a rotated unit vector, the latter an orthogonal projection.
[34] It is necessary to distinguish three cases: when both the level lines \(n = n_m\) and \(n = n_M\) are in the region A < −B, when both are in the region A > −B, and when \(n = n_m\) is in the first region while \(n = n_M\) is in the second one. Note, in fact, that the level lines of n cannot cross (asymptotically) the critical line A = −B.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.