Conditions for equivalence between the Hu-Washizu and related formulations, and computational behavior in the incompressible limit. (English) Zbl 1123.74020

Summary: The relationship among Hu-Washizu mixed formulation and other mixed and enhanced formulations is examined in detail, in the context of linear elasticity, with a view to present a unified framework for such formulations. The Hu-Washizu formulation is considered in both its classical form and in a modified form that is suited to establish the well-posedness in incompressible limit. Recently established theoretical results on uniform well-posedness are studied computationally by considering a range of numerical examples, which illustrate where appropriate the good behavior predicted by the theory, as well as the locking behavior that is evident in those problems in which the conditions for stability and convergence are not satisfied.


74G65 Energy minimization in equilibrium problems in solid mechanics
74B05 Classical linear elasticity
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI


[1] Andelfinger, U.; Ramm, E., EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements, Int. J. numer. methods engrg., 36, 1311-1337, (1993) · Zbl 0772.73071
[2] Armero, F., On the locking and stability of finite elements in finite deformation plane strain problems, Comput. struct., 75, 261-290, (2000)
[3] Arunakirinathar, K.; Reddy, B.D., Further results for enhanced strain methods with isoparametric elements, Comput. methods appl. mech. engrg., 127, 127-143, (1995) · Zbl 0862.73056
[4] Belytschko, T.; Bachrach, W., Efficient implementation of quadrilaterals with high coarse-mesh accuracy, Comput. methods appl. mech. engrg., 54, 279-301, (1986) · Zbl 0579.73075
[5] Braess, D., Enhanced assumed strain elements and locking in membrane problems, Comput. methods appl. mech. engrg., 165, 155-174, (1998) · Zbl 0949.74065
[6] Braess, D.; Carstensen, C.; Reddy, B.D., Uniform convergence and a posteriori error estimators for the enhanced strain finite element method, Numer. math., 96, 461-479, (2004) · Zbl 1050.65097
[7] Braess, D.; Ming, P.-B., A finite element method for nearly incompressible elasticity problems, Math. comput., 74, 25-52, (2005) · Zbl 1112.74060
[8] Brezzi, F.; Fortin, M., A minimal stabilization procedure for mixed finite element methods, Numer. math., 89, 457-491, (2001) · Zbl 1009.65067
[9] Felippa, C.A., On the original publication of the general canonical functional of linear elasticity, J. appl. mech., 67, 217-219, (2000) · Zbl 1110.74435
[10] Flanagan, D.P.; Belytschko, T., A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Int. J. numer. methods engrg., 17, 679-706, (1981) · Zbl 0478.73049
[11] B.M. Fraeijs de Veubeke, Diffusion des inconnues hyperstatiques dans les voilures á longeron couplés. Bull. Serv. Technique de l’Aeronautique, Impremérie Marcel Hayez, Bruxelles, 1951.
[12] Fraeijs de Veubeke, B.M., Displacement and equilibrium models, Stress analysis, (1965), Wiley London · Zbl 0359.73007
[13] Fraeijs de Veubeke, B.M., Displacement and equilibrium models, Int. J. numer. methods engrg., 52, 287-342, (2001) · Zbl 1065.74625
[14] Franca, L.P., Analysis and finite element approximation of compressible and incompressible linear isotropic elasticity based on a variational principle, Comput. methods appl. mech. engrg., 76, 259-273, (1988) · Zbl 0688.73044
[15] Franca, L.P.; Hughes, T.J.R., Two classes of mixed finite element methods, Comput. methods appl. mech. engrg., 69, 89-129, (1988) · Zbl 0651.65078
[16] Franca, L.P.; Hughes, T.J.R.; Loula, A.F.D.; Miranda, I., A new family of stable elements for nearly incompressible elasticity based on a petrov – galerkin finite element formulation, Comput. methods appl. mech. engrg., 53, 123-141, (1988) · Zbl 0656.73036
[17] Franca, L.P.; Stenberg, R., Error analysis of some Galerkin least squares methods for the elasticity equations, SIAM J. numer. anal., 53, 1680-1697, (1991) · Zbl 0759.73055
[18] Hu, H., On some variational principles in the theory of elasticity and the theory of plasticity, Sci. sini., 4, 33-54, (1955) · Zbl 0066.17903
[19] Hueck, U.; Wriggers, P., A formulation for the four-node quadrilateral element, Int. J. numer. methods engrg., 38, 3007-3037, (2000) · Zbl 0845.73068
[20] Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, (1987), Prentice-Hall New Jersey
[21] Kasper, E.P.; Taylor, R.L., A mixed-enhanced strain method. part I: geometrically linear problems, Comput. struct., 75, 237-250, (2000)
[22] Kasper, E.P.; Taylor, R.L., A mixed-enhanced strain method. part II: geometrically nonlinear problems, Comput. struct., 75, 251-260, (2000)
[23] B.P. Lamichhane, B.D. Reddy, B.I. Wohlmuth, Convergence in the incompressible limit of finite element approximations based on the Hu-Washizu formulation, in review. Preprint SFB404 No. 2004-05, Universität Stuttgart. Available from: <http://wwwa2.ians.uni-stuttgart.de/nmh/publications>. · Zbl 1175.74083
[24] Marrotti de Sciarra, F., Relations between enhanced strain methods and the hellinger – reissner method, Comput. methods appl. mech. engrg., 191, 2661-2677, (2002) · Zbl 1054.74055
[25] Nagtegaal, J.C.; Parks, D.M.; Rice, J.R., On numerically accurate finite element solutions in the fully plastic range, Comput. methods appl. mech. engrg., 4, 153-177, (1974) · Zbl 0284.73048
[26] Pian, T.H.H.; Sumihara, K., Rational approach for assumed stress finite elements, Int. J. numer. methods engrg., 20, 1685-1695, (1984) · Zbl 0544.73095
[27] Reddy, B.D.; Simo, J.C., Stability and convergence of a class of enhanced strain methods, SIAM J. numer. anal., 32, 1705-1728, (1995) · Zbl 0855.73073
[28] Reese, S.; Wriggers, P.; Reddy, B.D., A new locking-free brick element technique for large deformation problems in elasticity, Comput. struct., 291-304, (2000)
[29] M. Romano, F. Marrotti de Sciarra, M. Diaco, Well-posedness and convergence of three-field methods, 2001, preprint.
[30] Simo, J.C.; Armero, F., Geometrically nonlinear enhanced strain mixed methods and the method of incompatible modes, Int. J. numer. methods engrg., 33, 1413-1449, (1992) · Zbl 0768.73082
[31] Simo, J.C.; Armero, F.; Taylor, R.L., Improved versions of assumed enhanced tri-linear elements for 3D finite deformation problems, Comput. methods appl. mech. engrg., 110, 359-386, (1993) · Zbl 0846.73068
[32] Simo, J.C.; Hughes, T.J.R., On the variational foundations of assumed strain methods, J. appl. mech., 53, 51-54, (1986) · Zbl 0592.73019
[33] Simo, J.C.; Hughes, T.J.R., Computational inelasticity, (1999), Springer-Verlag Berlin · Zbl 0934.74003
[34] Simo, J.C.; Kennedy, J.; Govindjee, S., Complementary mixed finite element formulations of elastoplasticity, Comput. methods appl. mech. engrg., 74, 177-206, (1988) · Zbl 0687.73064
[35] Simo, J.C.; Rifai, M.S., A class of assumed strain methods and the method of incompatible modes, Int. J. numer. methods engrg., 29, 1595-1638, (1990) · Zbl 0724.73222
[36] Stolarski, H.; Belytschko, T., Limitation principles for mixed finite elements based on the hu – washizu variational formulation, Comput. methods appl. mech. engrg., 60, 195-216, (1987) · Zbl 0613.73017
[37] Taylor, R.L.; Beresford, P.J.; Wilson, E.L., A non-conforming element for stress analysis, Int. J. numer. methods engrg., 10, 1211-1220, (1976) · Zbl 0338.73041
[38] K. Washizu, On the variational principles of elasticity and plasticity. Report 25-18, Massachusetts Institute of Technology, 1955. · Zbl 0064.37703
[39] Wilson, E.L.; Taylor, R.L.; Doherty, W.P.; Ghaboussi, J., Incompatible displacement models, (), 43-57
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.