×

Coupling BEM with FEM by a direct computation of the boundary stiffness matrix. (English) Zbl 1229.65208

Summary: The “boundary stiffness matrix” characterizing in a discretized form the response of the boundary to given Dirichlet boundary conditions allows the coupling between BEM and FEM. The paper presents an approach based on the direct computation of the stiffness matrix from the potential function related to a given Dirichlet boundary condition. The method produces a symmetric stiffness matrix as for the singular Galerkin boundary element method, but does not need to compute hypersingular integrals. In addition, the method uses only the nodal values of the boundary potential, but does not need discretized values of the normal gradient at the boundary, as for usual boundary element methods, which reduces the number of matrices to be constructed. The regularization of the integrals is achieved by means used for (simply) singular integrals introduced for the collocation boundary element method. An example of application is produced in the case of the solution of Laplace equation within a plane domain.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Aliabadi, F., The boundary element method: Application in solids and structures (2002), John Wiley and Sons: John Wiley and Sons New York
[2] Aour, B.; Rahmani, O.; Nait-Abdelaziz, M., A coupled FEM/BM approach and its accuracy for solving crack problems in fracture mechanics, Int. J. Solids Struct., 44, 2523-2539 (2007) · Zbl 1276.74034
[3] Bonnet, M.; Giuggiani, M., Direct evaluation of double singular integrals and new free terms in 2D (Symmetric) Galerkin BEM, Comput. Methods Appl. Mech. Engrg., 192, 2565-2596 (2003) · Zbl 1046.65101
[4] Bonnet, M.; Maier, G.; Polizzotto, C., Symmetric Galerkin boundary element methods, Appl. Mech. Rev., 51, 11, 669-704 (1998)
[5] Bonnet, M., Regularized direct and indirect symmetric variational BIE formulations for three-dimensional elasticity, Engrg. Anal. Bound. Elem., 15, 93-102 (1995)
[6] Bonnet, M., Boundary Integral Equation Methods for Solids and Fluids (1999), Wiley Publication: Wiley Publication New York
[7] Brebbia, C. A.; Georgiou, P., Combination of boundary and finite elements in elastostatics, Appl. Math. Modell., 3, 212-220 (1979) · Zbl 0406.73009
[8] Carini, A.; Diligenti, M.; Maranezi, P.; Zanella, M., Analytical integrations for two-dimensional elastic analysis by the symmetric Galerkin boundary element method, Comput. Mech., 23, 308-323 (1999) · Zbl 0949.74075
[9] Christiansen, S., On two methods for elimination of non-unique solutions of an integral equation with a logarithmic kernel, Appl. Anal., 13, 1-18 (1982) · Zbl 0446.65061
[10] DeFigueiredo, T. G.B., A New Boundary Element Formulation in Engineering (1991), Springer: Springer Berlin · Zbl 0726.73083
[11] Duddeck, F. M.E.; Geisenhofer, M., A generalization of BEM by Fourier, Comput. Mech., 28, 303-310 (2002) · Zbl 1062.74057
[12] Gaul, L.; Moser, F., Non-singular symmetric boundary element formulation for elastodynamics, Engrg. Anal. Bound. Elem., 25, 843-849 (2001) · Zbl 1008.74080
[13] Givoli, D.; Keller, J. B., A finite element method for large domains, Comput. Methods Appl. Mech. Engrg., 76, 1, 41-66 (1989) · Zbl 0687.73065
[14] Givoli, D., Recent advances in the DtN FE method, Arch. Comput. Methods Engrg., 6, 2, 71-116 (1999)
[15] Halpern, L.; Lafitte, O., Dirichlet to Neumann map for domains with corners and approximate boundary conditions, J. Comput. Appl. Math., 204, 505-514 (2007) · Zbl 1117.35318
[16] Han, Z. D.; Atluri, S. N., SGBEM-FEM alternating method for analyzing 3D surface cracks and their fatigue growth, Comput. Model. Engrg. Sci., 3, 6, 699-716 (2002) · Zbl 1151.74425
[17] Hartmann, F.; Katz, C.; Protopsaltis, B., Boundary elements and symmetry, Ingenieur Arch., 55, 440-449 (1985) · Zbl 0573.73094
[18] Hughes, T. J.R., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg., 127, 387-401 (1995) · Zbl 0866.76044
[19] Koyama, D., Error estimates of the DtN finite element method for the exterior Helmholtz problem, J. Comput. Appl. Math., 200, 21-31, 321-331 (2007)
[20] Leung, K. L.; Zavareh, P. B.; Beskos, D. E., 2D elastostatic analysis by a symmetric BEM/FEM scheme, Engrg. Anal. Bound. Elem., 15, 67-78 (1995)
[21] Mang, H. A.; Torzicky, P.; Chen, Z. Y., On the mechanical inconsistency of symmetrization of unsymmetric coupling matrices for BE-FEM discretizations of solids, Comput. Mech., 4, 301-308 (1989) · Zbl 0675.73050
[22] Panzeca, T.; Cucco, F.; Terravecchia, M., Symmetric boundary element method versus finite element method, Comput. Methods Appl. Mech. Engrg., 191, 3347-3367 (2002) · Zbl 1101.74370
[23] Panzeca, T.; Fujita Yashima, H.; Salerno, M., Direct stiffness matrices of BEs in the Galerkin BEM formulation, Euro. J. Mech. A/Solids, 20, 277-298 (2001) · Zbl 0983.74079
[24] Polizotto, C.; Zito, M., Variational formulations for coupled BE/FE methods in elastostatics, Zeitsch. Angew. Math. Mech., 74, 533-543 (1994) · Zbl 0819.73067
[25] Polizotto, C., An energy approach to the boundary element method, Comput. Methods Appl. Mech. Engrg., 69s, 167-184 (1988)
[26] Rizzo, F. J.; Shippy, D. J.; Rezayat, M., A boundary integral equation method for radiation and scattering of elastic waves in three dimensions, Int. J. Numer. Methods Engrg., 21, 115-129 (1985) · Zbl 0607.73025
[27] Sirtori, S.; Maier, G.; Novati, G.; Miccoli, S., Computational anisotropic elasticity, Int. J. Numer. Methods Engrg., 35, 255-282 (1992) · Zbl 0768.73089
[28] Sirtori, S., General stress analysis method by means of integral equations and boundary elements, Mechanica, 14, 210-218 (1979) · Zbl 0442.73079
[29] Springetti, R.; Novati, G.; Margonari, M., Weak coupling of the symmetric Galerkin BEM with FEM for potential and elastostatic problems, Comput. Model. Engrg. Sci., 13, 1, 67-80 (2006) · Zbl 1357.74064
[30] Terravecchia, S., Closed form coefficients in the symmetric boundary element approach, Engrg. Anal. Bound. Elem., 30, 479-488 (2006) · Zbl 1195.74263
[31] Wearing, J. L.; Sheikh, M. A., A regular indirect boundary element method for thermal analysis, Int. J. Numer. Methods Engrg., 25, 495-515 (1988) · Zbl 0668.76115
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.