×

Energy content in linear mechanical systems with arbitrary time dependence. (English) Zbl 1404.37075

Summary: A novel complementary variables formulation permits the obtainment of invariants of a mechanical system following the rationale of Abel’s differential equation identity. This approach allows for the decomposition of the total energy of the system into the energy of the object and the dynamic energy of the field. The force acting on the object must be linear in the spatial variable but is arbitrary in the time variable. Several examples, such as the time dependent harmonic oscillator and a swing are described with this complementary variables formulation. The exact solution for the energy of a Lorentz pendulum with uniformly varying length is presented.

MSC:

37K05 Hamiltonian structures, symmetries, variational principles, conservation laws (MSC2010)
70S10 Symmetries and conservation laws in mechanics of particles and systems
70H33 Symmetries and conservation laws, reverse symmetries, invariant manifolds and their bifurcations, reduction for problems in Hamiltonian and Lagrangian mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Talman, R., Geometric mechanics, (2008), Wiley
[2] Blau, M., Plane wave geometry and quantum physics, (2009), Birkhäuser Basel · Zbl 1159.81398
[3] Gavrila, M., Atomic stabilization in superintense laser fields, J. Phys. B, At. Mol. Opt. Phys., 35, 18, R147-R193, (2002)
[4] Stilling, D. S.D.; Szyszkowski, W., Controlling angular oscillations through mass reconfiguration: a variable length pendulum case, Int. J. Non-Linear Mech., 37, 1, 89-99, (2002) · Zbl 1117.74309
[5] Wright, J. A.; Bartuccelli, M.; Gentile, G., Comparisons between the pendulum with varying length and the pendulum with oscillating support, J. Math. Anal. Appl., 449, 2, 1684-1707, (2017) · Zbl 1373.37183
[6] Langevin, P.; de Broglie, M., La théorie du rayonnement et LES quanta, (1911), Gauthier-Villars Paris, rapports et discussions de la réunion tenue à Bruxelles, du 30 octobre au 3 novembre 1911, sous les auspices de M.E. Solvay (1912) · JFM 43.0983.05
[7] Ehrenfest, P., Welche Züge der lichtquantenhypothese spielen in der theorie der Wärmestrahlung eine wesentliche rolle?, Ann. Phys., 341, 11, 91-118, (1911) · JFM 42.0911.02
[8] Ehrenfest, P., On adiabatic changes of a system in connection with the quantum theory, vol. 19 I, 576-597, (1917), Huygens Institute
[9] Haar, D. T., Adiabatic invariance and adiabatic invariants, Contemp. Phys., 7, 6, 447-458, (1966)
[10] Keller, J.; Mu, Y., Changes in adiabatic invariants, Ann. Phys., 205, 2, 219-227, (1991) · Zbl 0722.70020
[11] G. Galilei, Discorsi e dimostrazioni matematiche intorno a due nuove scienze, progetto Manuzio, 1998 edn., ISBN 88-02-03457-5, 1638.; G. Galilei, Discorsi e dimostrazioni matematiche intorno a due nuove scienze, progetto Manuzio, 1998 edn., ISBN 88-02-03457-5, 1638.
[12] G. Galilei, Dialogues Concerning Two New Sciences, William Andrew Publ., ISBN 88-02-03457-5, 1638.; G. Galilei, Dialogues Concerning Two New Sciences, William Andrew Publ., ISBN 88-02-03457-5, 1638. · JFM 45.1216.05
[13] Goldstein, H.; Poole, C.; Safko, J., Classical mechanics, (2002), Addison Wesley
[14] Ermakov, V., Second order differential equations. conditions of complete integrability, Univ. Izv. Kiev Ser. III, 9, (1880)
[15] Kamenshchik, A.; Luzzi, M.; Venturi, G., Method of comparison equations and generalized Ermakov’s equation, Russ. Phys. J., 52, 1339-1351, (2009) · Zbl 1204.81074
[16] Fernández-Guasti, M., Complementary fields conservation equation derived from the scalar wave equation, J. Phys. A, Math. Gen., 37, 4107-4121, (2004) · Zbl 1062.35040
[17] González-Acosta, E.; Corona-Galindo, M., Obtaining time-dependent invariants by the sarlet-bahar method for a non-linear equation, Rev. Mex. Fis., 53, 1, 1-3, (2007) · Zbl 1326.70038
[18] Sarlet, W.; Cantrijn, F., A generalization of the nonlinear superposition idea for Ermakov systems, Phys. Lett. A, 88, 8, 383, (1982)
[19] Fernández-Guasti, M.; Gil-Villegas, A., Orthogonal functions invariant for the time dependent harmonic oscillator, Phys. Lett. A, 292, 243-245, (2002) · Zbl 0988.81030
[20] Moyo, S.; Leach, P. G.L., A note on the construction of the Ermakov-Lewis invariant, J. Phys. A, Math. Gen., 35, 5333, (2002) · Zbl 1039.70010
[21] Lutzky, M., Noether’s theorem and the time-dependent harmonic oscillator, Phys. Lett. A, 68, 1, 3, (1978)
[22] Ray, J. R.; Reid, J. L., Noether’s theorem, time-dependent invariants and nonlinear equations of motion, J. Math. Phys., 20, 2054, (1979) · Zbl 0448.70018
[23] Landau, L. D.; Lifshitz, E. M., Mechanics, (1976), Pergamon Press
[24] Littlewood, J. E., Lorentz’s pendulum problem, Ann. Phys., 21, 2, 233-242, (1963) · Zbl 0123.05103
[25] Brearley, M. N., The simple pendulum with uniformly changing string length, Proc. Edinb. Math. Soc., 15, 1, 61-66, (1966) · Zbl 0196.37001
[26] Werner, A.; Eliezer, C. J., The lengthening pendulum, J. Aust. Math. Soc., 9, 3-4, 331-336, (1969) · Zbl 0181.52003
[27] Littlewood, J. E., Adiabatic invariance IV: note on a new method for Lorentz’s pendulum problem, Ann. Phys., 29, 1, 13-18, (1964) · Zbl 0127.04404
[28] Deniz, C., On the JWKB solution of the uniformly lengthening pendulum via change of independent variable in the Bessel’s equation, Pramana, 88, 1, 20, (2017)
[29] Belyakov, A. O.; Seyranian, A. P., Dynamics of a pendulum of variable length and similar problems, (Awrejcewicz, J., Nonlinearity, Bifurcation and Chaos - Theory and Applications, (2012), InTech)
[30] Zevin, A.; Filonenko, L., A qualitative investigation of the oscillations of a pendulum with a periodically varying length and a mathematical model of a swing, J. Appl. Math. Mech., 71, 6, 892-904, (2007) · Zbl 1164.70025
[31] Belyakov, A. O.; Seyranian, A. P.; Luongo, A., Dynamics of the pendulum with periodically varying length, Phys. D: Nonlinear Phenom., 238, 16, 1589-1597, (2009) · Zbl 1179.37069
[32] Fernández-Guasti, M., Solutions to a periodic nonlinear differential equation: nonlinear Floquet theorem, Int. J. Appl. Comput. Math., 3, 4, 3379-3388, (2017)
[33] Kibble, T. W.B., Conservation laws for free fields, J. Math. Phys., 6, 7, 1022-1026, (1965)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.