×

A broken reproducing kernel method for the multiple interface problems. (English) Zbl 1513.65261

MSC:

65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
46E22 Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Albright, J.; Epshteyn, Y.; Medvinsky, M.; Xia, Q., High-order numerical schemes based on difference potentials for 2d elliptic problems with material interfaces, Appl Numer Math, 111, 64-91 (2017) · Zbl 1353.65110 · doi:10.1016/j.apnum.2016.08.017
[2] Alpay D (2003) Reproducing kernel spaces and applications. doi:10.1007/978-3-0348-8077-0 · Zbl 1021.00005
[3] Babuška, I.; Caloz, G.; Osborn, JE, Special finite element methods for a class of second order elliptic problems with rough coefficients, SIAM J Numer Anal, 31, 4, 945-981 (1994) · Zbl 0807.65114 · doi:10.1137/0731051
[4] Bedrossian, J.; von Brecht, JH; Zhu, S.; Sifakis, E.; Teran, JM, A second order virtual node method for elliptic problems with interfaces and irregular domains, J Comput Phys, 229, 18, 6405-6426 (2010) · Zbl 1197.65168 · doi:10.1016/j.jcp.2010.05.002
[5] Berlinet A, Thomas-Agnan C (2004) Reproducing kernel Hilbert space in probability and statistics. doi:10.1007/978-1-4419-9096-9 · Zbl 1145.62002
[6] Cao, W.; Zhang, X.; Zhang, Z., Superconvergence of immersed finite element methods for interface problems, Adv Comput Math, 43, 4, 795-821 (2017) · Zbl 1380.65365 · doi:10.1007/s10444-016-9507-7
[7] Cao, W.; Zhang, X.; Zhang, Z.; Zou, Q., Superconvergence of immersed finite volume methods for one-dimensional interface problems, J Sci Comput, 73, 1, 543-565 (2018) · Zbl 1384.65045 · doi:10.1007/s10915-017-0609-2
[8] Chen, Z.; Wu, L.; Lin, Y., Exact solution of a class of fractional integro-differential equations with the weakly singular kernel based on a new fractional reproducing kernel space, Math Methods Appl Sci, 41, 10, 3841-3855 (2018) · Zbl 1395.45019 · doi:10.1002/mma.4870
[9] Dryja, M.; Galvis, J.; Sarkis, M., Bddc methods for discontinuous Galerkin discretization of elliptic problems, J Complex, 23, 4, 715-739 (2007) · Zbl 1133.65097 · doi:10.1016/j.jco.2007.02.003
[10] Du, H.; Chen, Z., A new reproducing kernel method with higher convergence order for solving a Volterra-Fredholm integral equation, Appl Math Lett, 102, 106117 (2019) · Zbl 1445.65048 · doi:10.1016/j.aml.2019.106117
[11] Du, H.; Chen, Z.; Yang, T., A stable least residue method in reproducing kernel space for solving a nonlinear fractional integro-differential equation with a weakly singular kernel, Appl Numer Math (2020) · Zbl 1453.65449 · doi:10.1016/j.apnum.2020.06.004
[12] Du, H.; Chen, Z.; Yang, T., A meshless method in reproducing kernel space for solving variable-order time fractional advection-diffusion equations on arbitrary domain, Appl Math Lett, 116, 107014 (2021) · Zbl 1468.65172 · doi:10.1016/j.aml.2020.107014
[13] Epshteyn, Y.; Phippen, S., High-order difference potentials methods for 1d elliptic type models, Appl Numer Math, 93, 69-86 (2015) · Zbl 1326.65142 · doi:10.1016/j.apnum.2014.02.005
[14] Ewing, R.; Iliev, O.; Lazarov, R., A modified finite volume approximation of second-order elliptic equations with discontinuous coefficients, SIAM J Sci Comput, 23, 4, 1335-1351 (2001) · Zbl 0999.65112 · doi:10.1137/S1064827599353877
[15] Geng, FZ; Qian, SP, Modified reproducing kernel method for singularly perturbed boundary value problems with a delay, Appl Math Model, 39, 18, 5592-5597 (2015) · Zbl 1443.65090 · doi:10.1016/j.apm.2015.01.021
[16] Geng, F.; Xu, Y., Reproducing kernel functions based univariate spline interpolation, Appl Math Lett, 122, 107525 (2021) · Zbl 1524.65292 · doi:10.1016/j.aml.2021.107525
[17] Gong, Y.; Li, B.; Li, Z., Immersed-interface finite-element methods for elliptic interface problems with nonhomogeneous jump conditions, SIAM J Numer Anal, 46, 1, 472-495 (2008) · Zbl 1160.65061 · doi:10.1137/060666482
[18] Greengard, L.; Moura, M., On the numerical evaluation of electrostatic fields in composite materials, Acta Numer, 3, 379-410 (1994) · Zbl 0815.73047 · doi:10.1017/S0962492900002464
[19] He, X.; Lin, T.; Lin, Y., Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient, J Syst Sci Complex, 23, 3, 467-483 (2010) · Zbl 1205.35010 · doi:10.1007/s11424-010-0141-z
[20] Leveque, RJ; Li, Z., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J Numer Anal, 31, 4, 1019-1044 (1994) · Zbl 0811.65083 · doi:10.1137/0731054
[21] Li, F.; Zou, W., Nonlinear elliptic boundary value problem with equivalued surface in a domain with thin layer, Nonlinear Differ Equ Appl, 17, 6, 729-755 (2010) · Zbl 1204.35089 · doi:10.1007/s00030-010-0079-9
[22] Liu, K.; Zou, Q., Analysis of a special immersed finite volume method for elliptic interface problems, Int J Numer Anal Model, 16, 1, 964-984 (2019) · Zbl 1431.65200
[23] Mei, L.; Jia, Y.; Lin, Y., Simplified reproducing kernel method for impulsive delay differential equations, Appl Math Lett, 83, 123-129 (2018) · Zbl 1503.65138 · doi:10.1016/j.aml.2018.03.024
[24] Mu, L.; Wang, J.; Wei, G.; Ye, X.; Zhao, S., Weak Galerkin methods for second order elliptic interface problems, J Comput Phys, 250, 106-125 (2013) · Zbl 1349.65472 · doi:10.1016/j.jcp.2013.04.042
[25] Niu, J.; Xu, M.; Lin, Y.; Xue, Q., Numerical solution of nonlinear singular boundary value problems, J Comput Appl Math, 331, 42-51 (2018) · Zbl 1377.65095 · doi:10.1016/j.cam.2017.09.040
[26] Peskin, CS, Numerical analysis of blood flow in the heart, J Comput Phys, 25, 3, 220-252 (1977) · Zbl 0403.76100 · doi:10.1016/0021-9991(77)90100-0
[27] Sun, L.; Niu, J.; Hou, J., A high order convergence collocation method based on the reproducing kernel for general interface problems, Appl Math Lett, 112, 106718 (2020) · Zbl 1455.65122 · doi:10.1016/j.aml.2020.106718
[28] Xu, M-Q; Lin, Y-Z, Simplified reproducing kernel method for fractional differential equations with delay, Appl Math Lett, 52, 156-161 (2016) · Zbl 1330.65102 · doi:10.1016/j.aml.2015.09.004
[29] Xu, M.; Niu, J.; Tohidi, E.; Hou, J.; Jiang, D., A new least-squares-based reproducing kernel method for solving regular and weakly singular Volterra-Fredholm integral equations with smooth and nonsmooth solutions, Math Methods Appl Sci, 44, 13, 10772-10784 (2021) · Zbl 1504.65295 · doi:10.1002/mma.7444
[30] Xu, M.; Zhang, L.; Tohidi, E., A fourth-order least-squares based reproducing kernel method for one-dimensional elliptic interface problems, Appl Numer Math, 162, 124-136 (2021) · Zbl 1460.65095 · doi:10.1016/j.apnum.2020.12.015
[31] Yu, Y.; Niu, J.; Zhang, J.; Ning, SY, A reproducing kernel method for nonlinear c-q-fractional ivps, Appl Math Lett, 125, 107751 (2021) · Zbl 1496.65084 · doi:10.1016/j.aml.2021.107751
[32] Zang, J.; Hou, J.; Niu, J.; Xie, R.; Dai, X., A high order approach for nonlinear Volterra-Hammerstein integral equations, AIMS Math, 7, 1460-1469 (2021) · doi:10.3934/math.2022086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.