×

Revisiting the Thomas-Fermi equation: accelerating rational Chebyshev series through coordinate transformations. (English) Zbl 1507.65260

Summary: We revisit the spectral solution of the Thomas-Fermi problem for neutral atoms, \(u_{r r} -(1 / \sqrt{r}) u^{3 / 2} = 0\) on \(r \in [0, \infty]\) with \(u(0) = 1\) and \(u(\infty) = 0\) to illustrate some themes in solving differential equations when there are complications, and also to make improvements in our earlier treatment. By “complications” we mean features of the problem that either destroy the exponential accuracy of a standard Chebyshev series, or render the classic Chebyshev approach inapplicable. The Thomas-Fermi problem has four complications: (i) a semi-infinite domain \(r \in [0, \infty]\) (ii) a square root singularity in \(u(r)\) at the origin (iii) a fractional power nonlinearity and (iv) asymptotic decay as \(r \rightarrow \infty\) that includes negative powers of \(r\) with fractional exponents. Our earlier treatment determined the slope at the origin to twenty-five decimal places, but no fewer than 600 basis functions were required to approximate a univariate solution that is everywhere monotonic, and all of the earlier tricks failed to recover an exponential rate of convergence in the truncation of the spectral series \(N\), but only a high order convergence in negative powers of \(N\). Here, using the coordinate \(z \equiv \sqrt{r}\) to neutralize the square root singularity as before, we show that accuracy and rate of convergence are significantly improved by solving for the original unknown \(u(r)\) instead of the modified unknown \(v(r) = \sqrt{u(r)}\) used previously. Without a further change of coordinate, a rational Chebyshev basis \(T L_n(z; L)\) yields twelve decimal place accuracy for the slope at the origin, \(u_r(0)\), with 70 basis functions and twenty-four decimal places with a truncation \(N = 100\).
True exponential accuracy can be restored by using an appropriate change of coordinate, \(z = \mathcal{G}(Z)\), where \(\mathcal{G}\) is some species of exponential. However, the various Chebyshev and Fourier series for the Thomas-Fermi function have “plural asymptotics”, that is, \(a_n \sim a^{\mathit{intermediate}}(n)\) for \(1 \ll n \ll n_I\) but \(a_n \sim a^{\mathit{far}}(n)\) for \(n \gg n_I\) for some positive constant \(n_I\). The “far-asymptotics” as \(n \rightarrow \infty\) are often of no practical significance. For this problem, the TL-with-sinh method, theoretically the best for huge \(n\), is bedeviled with numerical ill-conditioning and its asymptotic superiority is realized only when the goal is at least forty decimal places of accuracy.
This is absurd for engineering, but useful perhaps for benchmarking. To sixty decimal places, \(u_r(0) = - 1.588071022611375312718684509423950109452746621674825616765677\). To nineteen digits after the decimal point, the constant in the Coulson-March asymptotic series is improved to \(F = 13.2709738480269351535\).

MSC:

65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allgower, E. L.; Georg, K., Introduction to numerical continuation methods, Classics in Applied Mathematics, vol. 45, (2003), Society for Industrial and Applied Mathematics Philadelphia · Zbl 1036.65047
[2] Baker, E. B., The application of the Fermi-Thomas statistical model to the calculation of potential distribution in positive ions, Phys. Rev., 36, 630-647, (1930) · JFM 56.1327.06
[3] Bayatbabolghani, F.; Parand, K., Using Hermite function for solving Thomas-Fermi equation, Int. J. Math. Comput. Sci. Eng., 8, 123-126, (2014)
[4] Bender, C. M.; Milton, K. A.; Pinsky, S. S.; Simmons, L. M., A new perturbative approach to nonlinear problems, J. Math. Phys., 30, 1447-1455, (1989) · Zbl 0684.34008
[5] Bethe, H., Thomas-Fermi theory of nuclei, Phys. Rev., 167, 879-907, (1968)
[6] Boyd, J. P., An analytical and numerical study of the two-dimensional bratu equation, J. Sci. Comput., 1, 183-206, (1985) · Zbl 0649.65057
[7] Boyd, J. P., Orthogonal rational functions on a semi-infinite interval, J. Comput. Phys., 70, 63-88, (1987) · Zbl 0614.42013
[8] Boyd, J. P., Spectral methods using rational basis functions on an infinite interval, J. Comput. Phys., 69, 112-142, (1987) · Zbl 0615.65090
[9] Boyd, J. P., Chebyshev domain truncation is inferior to Fourier domain truncation for solving problems on an infinite interval, J. Sci. Comput., 3, 109-120, (1988) · Zbl 0666.65099
[10] Boyd, J. P., The asymptotic Chebyshev coefficients for functions with logarithmic endpoint singularities, Appl. Math. Comput., 29, 49-67, (1989) · Zbl 0668.65017
[11] Boyd, J. P., The rate of convergence of Fourier coefficients for entire functions of infinite order with application to the weideman-cloot sinh-mapping for pseudospectral computations on an infinite interval, J. Comput. Phys., 110, 360-372, (1994) · Zbl 0806.65146
[12] Boyd, J. P., Weakly nonlocal solitary waves and beyond-all-orders asymptotics: generalized solitons and hyperasymptotic perturbation theory, Mathematics and Its Applications, vol. 442, (1998), Kluwer Amsterdam, 608 pp · Zbl 0905.76001
[13] Boyd, J. P., Chebyshev and Fourier spectral methods, (2001), Dover Mineola, New York, 665 pp · Zbl 0994.65128
[14] Boyd, J. P., Deleted residuals, the QR-factored Newton iteration, and other methods for formally overdetermined determinate discretizations of nonlinear eigenproblems for solitary, cnoidal, and shock waves, J. Comput. Phys., 179, 216-237, (2002) · Zbl 1006.65116
[15] Boyd, J. P., A spectrally-accurate quadrature for resolving the logarithmic endpoint singularities of the Chandrasekhar H-function, J. Quant. Spectrosc. Radiat. Transf., 94, 467-475, (2005)
[16] Boyd, J. P., Why Newton’s method is hard for travelling waves: small denominators, KAM theory, Arnold’s linear Fourier problem, non-uniqueness, constraints and erratic failure, Math. Comput. Simul., 74, 72-81, (2007) · Zbl 1107.65351
[17] Boyd, J. P., Rational Chebyshev series for the Thomas-Fermi function: endpoint singularities and spectral methods, J. Comput. Appl. Math., 231, 90-101, (2013) · Zbl 1260.65065
[18] Boyd, J. P., Solving transcendental equations: the Chebyshev polynomial proxy and other numerical rootfinders, perturbation series and oracles, (2014), SIAM Philadelphia, 460 pp · Zbl 1311.65047
[19] Boyd, J. P., Tracing multiple solution branches for nonlinear ordinary differential and integral equations: Chebyshev and Fourier spectral methods and a degree-increasing spectral homotopy DISH, J. Sci. Comput., 19, 1115-1143, (2016) · Zbl 1371.65070
[20] Boyd, J. P., Strongly nonlinear perturbation theory for solitary waves and bions, Evol. Equ. Control Theory, (2018), in press
[21] Boyd, J. P.; Gheorghiu, C. I., All roots spectral methods: constraints, floating point arithmetic and root exclusion, Appl. Math. Lett., 67, 28-32, (2017) · Zbl 1358.65049
[22] Boyd, J. P.; Petschek, R., The relationships between Chebyshev, Legendre and Jacobi polynomial: the generic superiority of Chebyshev polynomials and three important exceptions, J. Sci. Comput., 59, 1-27, (2014) · Zbl 1301.41003
[23] Boyd, J. P.; Rangan, C.; Buchsbaum, P. H., Pseudospectral methods on a semi-infinite interval with application to the hydrogen atom: a comparison of the mapped Fourier-sine method with Laguerre series and rational Chebyshev expansions, J. Comput. Phys., 188, 56-74, (2003) · Zbl 1028.65086
[24] Cloot, A., Equidistributing mapping and spectral method for the computation on unbounded domains, Appl. Math. Lett., 4, 23-27, (1991) · Zbl 0724.65091
[25] Cloot, A.; Weideman, J. A.C., An adaptive algorithm for spectral computations on unbounded domains, J. Comput. Phys., 102, 398-406, (1992) · Zbl 0760.65095
[26] Coulson, C. A.; March, N. H., Momenta in atoms using the Thomas-Fermi method, Proc. R. Phys. Soc. A, 63, 367-374, (1950) · Zbl 0035.42302
[27] Dennis, J. E.; Schnabel, R. B., Numerical methods for nonlinear equations and unconstrained optimization, Classics in Applied Mathematics, vol. 16, (1987), SIAM Philadelphia
[28] Deuflhard, P., Newton methods for nonlinear problems: affine invariance and adaptive algorithms, (2004), Springer-Verlag Heidelberg · Zbl 1056.65051
[29] Fermi, E., Eine statistiche methode zur bestimmung einiger eigenschaften des atoms und ihre anwendung auf die theorie des periodischen systems der elemente, Z. Phys., 48, 73-79, (1928) · JFM 54.0984.02
[30] Fernandez, F. M., Rational approximation to the Thomas-Fermi equations, Appl. Math. Comput., 217, 6433-6436, (2011) · Zbl 1210.81133
[31] Feynman, R. P.; Metropolis, N.; Teller, E., Equations of state of elements based on the generalized Fermi-Thomas theory, Phys. Rev., 75, 1561-1573, (1949) · Zbl 0036.43007
[32] Fornberg, B., A practical guide to pseudospectral methods, (1996), Cambridge University Press New York · Zbl 0844.65084
[33] Kiliçman, A.; Hashim, I.; Kajani, M. T.; Maleki, M., On the rational second kind Chebyshev pseudospectral method for the solution of the Thomas-Fermi equation over an infinite interval, J. Comput. Appl. Math., 257, 79-85, (2014) · Zbl 1294.65080
[34] Kobayashi, S.; Matsukuma, T.; Nagi, S.; Umeda, K., Accurate value of the initial slope of the ordinary T-F function, J. Phys. Soc. Jpn., 10, 759-762, (1955)
[35] Lund, J.; Bowers, K. L., Sinc methods for quadrature and differential equations, (1992), Society for Industrial and Applied Mathematics Philadelphia, 304 pp · Zbl 0753.65081
[36] Mandelzweig, V. B.; Tabakin, F., Quasilinearization approach to nonlinear problems in physics with application to nonlinear odes, Comput. Phys. Commun., 141, 268-281, (2001) · Zbl 0991.65065
[37] Mason, J. C., Rational approximations to the ordinary Thomas-Fermi function and its derivatives, Proc. Phys. Soc., 84, 357-360, (1964)
[38] McLeod, A. J., Chebyshev series solution of the Thomas-Fermi equation, Comput. Phys. Commun., 67, 389-391, (1992) · Zbl 0875.65075
[39] Mori, M., Discovery of the double exponential transformation and its developments, Publ. RIMS, Kyoto Univ., 41, 897-935, (2005) · Zbl 1098.41031
[40] Mori, M.; Sugihara, M., The double exponential transformation in numerical analysis, J. Comput. Appl. Math., 127, 287-296, (2001) · Zbl 0971.65015
[41] Nurmuhammad, A.; Muhammad, M.; Mori, M.; Sugihara, M., Double exponential transformation in the sinc-collocation method for a boundary value problem with fourth-order ordinary differential equation, J. Comput. Appl. Math., 182, 32-50, (2001) · Zbl 1073.65064
[42] (Olver, F. W.J.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST Handbook of Mathematical Functions, (2010), Cambridge University Press New York) · Zbl 1198.00002
[43] Parand, K.; Dehghan, M.; Pirkhedri, A., The sinc-collocation method for solving the Thomas-Fermi equation, J. Comput. Appl. Math., 237, 244-252, (2013) · Zbl 1253.65111
[44] Parand, K.; Delkhosh, M., Accurate solution of the Thomas-Fermi equation using the fractional order of rational Chebyshev functions, J. Comput. Appl. Math., 317, 624-642, (2017) · Zbl 1362.34039
[45] Parand, K.; Delkhosh, M., New numerical solution for solving nonlinear singular Thomas-Fermi differential equation, Bull. Belg. Math. Soc. Simon Stevin, 24, 457-476, (2017) · Zbl 1377.65096
[46] Parand, K.; Ghaderi, A.; Yousefi, H.; Delkhosh, M., A new approach for solving nonlinear Thomas-Fermi equation based on fractional order of rational Bessel functions, Electron. J. Differ. Equ., (2016) · Zbl 1357.34035
[47] Parand, K.; Mazaheri, P.; Yousefi, H.; Delkhosh, M., Fractional order of rational Jacobi functions for solving the non-linear singular Thomas-Fermi equation, Eur. Phys. J. Plus, 132, (2017)
[48] Parand, K.; Shahini, M., Rational Chebyshev pseudospectral approach for solving Thomas-Fermi equation, Phys. Lett. A, 373, 210-213, (2009) · Zbl 1227.49050
[49] Parand, K.; Yousefi, H.; Delkhosh, M., A novel numerical technique to obtain an accurate solution to the Thomas-Fermi equation, Eur. Phys. J. Plus, 131, (2016)
[50] Schwinger, J., Thomas-Fermi model: the leading correction, Phys. Rev. A, 22, 1827-1832, (1980)
[51] Schwinger, J., Thomas-Fermi model: the second correction, Phys. Rev. A, 24, 2353-2361, (1981)
[52] Seydel, R., Practical bifurcation and stability analysis: from equilibrium to chaos, (1994), Springer-Verlag Heidelberg, 428 pp · Zbl 0806.34028
[53] Slater, J. C.; Krutter, H. M., The Thomas-Fermi method for metals, Phys. Rev., 47, 559-568, (1935) · Zbl 0011.28408
[54] Sommerfeld, A., Asymptotische integration der differential-gleichung des Thomas-fermischen atmos, Z. Phys., 78, 283-308, (1932) · JFM 58.1353.03
[55] Stenger, F., Numerical methods based on Whittaker cardinal or sinc functions, SIAM Rev., 23, 165-224, (1981) · Zbl 0461.65007
[56] Stenger, F., Sinc methods, (1993), Springer-Verlag New York, 500 pp
[57] Stenger, F., Summary of sinc numerical methods, J. Comput. Appl. Math., 121, 379-420, (2000) · Zbl 0964.65010
[58] Stenger, F., Handbook of sinc numerical methods, (2010), Chapman & Hall/CRC Boca Raton, Florida, 482 pp
[59] Thomas, L. H., The calculation of atomic fields, Math. Proc. Camb. Philos. Soc., 23, 542-548, (1927) · JFM 53.0868.04
[60] Trefethen, L. N., Spectral methods in Matlab, (2000), Society for Industrial and Applied Mathematics Philadelphia · Zbl 0953.68643
[61] Trefethen, L. N., Approximation theory and approximation practice, (2013), Society for Industrial and Applied Mathematics (SIAM) Philadelphia · Zbl 1264.41001
[62] Trefethen, L. N.; Weideman, J. A.C., The exponentially convergent trapezoidal rule, SIAM Rev., 56, 385-458, (2014) · Zbl 1307.65031
[63] Tuan, P. D.; Elliott, D., Coefficients in series expansions for certain classes of functions, Math. Comput., 26, 213-232, (1972) · Zbl 0256.42012
[64] Weideman, J. A.C.; Cloot, A., Spectral methods and mappings for evolution equations on the infinite line, Comput. Methods Appl. Mech. Eng., 80, 467-481, (1990) · Zbl 0732.65095
[65] Weideman, J. A.C.; Trefethen, L. N., The kink phenomenon in Fejér and Clenshaw-Curtis quadrature, Numer. Math., 107, 707-727, (2007) · Zbl 1142.41010
[66] Zaitsev, N. A.; Matyushkin, I. V.; Shamonov, D. V., Numerical solution of the Thomas-Fermi equation for the centrally symmetric atom, Russ. Microelectron., 3, 303-309, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.