×

Recent developments in instantons in noncommutative \(\mathbb R^4\). (English) Zbl 1201.81103

Summary: We review recent developments in noncommutative deformations of instantons in \(\mathbb R^4\). In the operator formalism, we study how to make noncommutative instantons by using the ADHM method, and we review the relation between topological charges and noncommutativity. In the ADHM methods, there exist instantons whose commutative limits are singular. We review smooth noncommutative deformations of instantons, spinor zero-modes, the Green’s functions, and the ADHM constructions from commutative ones that have no singularities. It is found that the instanton charges of these noncommutative instanton solutions coincide with the instanton charges of commutative instantons before noncommutative deformation. These smooth deformations are the latest developments in noncommutative gauge theories, and we can extend the procedure to other types of solitons. As an example, vortex deformations are studied.

MSC:

81T75 Noncommutative geometry methods in quantum field theory
81R60 Noncommutative geometry in quantum theory
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
81-02 Research exposition (monographs, survey articles) pertaining to quantum theory
35J08 Green’s functions for elliptic equations
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] M. A. Shifman, Instantons in Gauge Theories, World Scientific, Singapore, 1994. · Zbl 1181.86001
[2] S. K. Donaldson and P. B. Kronheimer, The Geometry of Four-Manifolds, Oxford Mathematical Monographs, The Clarendon Press/Oxford University Press, New York, NY, USA, 1990. · Zbl 0836.57012
[3] N. Nekrasov, The Physics and Mathematics of Instantons, International Series of Monographs on Physics, Oxford University Press, Oxford, UK.
[4] N. Nekrasov and A. S. Schwarz, “Instantons on noncommutative R4, and (2,0) superconformal six-dimensional theory,” Communications in Mathematical Physics, vol. 198, no. 3, pp. 689-703, 1998. · Zbl 0923.58062 · doi:10.1007/s002200050490
[5] M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld, and Yu. I. Manin, “Construction of instantons,” Physics Letters A, vol. 65, no. 3, pp. 185-187, 1978. · Zbl 0424.14004 · doi:10.1016/0375-9601(78)90141-X
[6] K.-Y. Kim, B.-H. Lee, and H. S. Yang, “Comments on instantons on noncommutative \Bbb R4,” Journal of the Korean Physical Society, vol. 41, no. 3, pp. 290-297, 2002.
[7] N. A. Nekrasov, “Noncommutative instantons revisited,” Communications in Mathematical Physics, vol. 241, no. 1, pp. 143-160, 2003. · Zbl 1160.81428 · doi:10.1007/s00220-003-0911-8
[8] K. Furuuchi, “Dp-D(p+4) in noncommutative Yang-Mills,” Journal of High Energy Physics, vol. 2001, no. 03, article 033, 2001. · Zbl 1030.46099 · doi:10.1088/1126-6708/2001/03/033
[9] D. H. Correa, G. Lozano, E. F. Moreno, and F. A. Schaposnik, “Comments on the U noncommutative instanton,” Physics Letters B, vol. 515, no. 1-2, pp. 206-212, 2001. · Zbl 0971.81079 · doi:10.1016/S0370-2693(01)00846-2
[10] O. Lechtenfeld and A. D. Popov, “Noncommutative multi-solitons in 2+1 dimensions,” Journal of High Energy Physics, vol. 2001, no. 11, article 040, 2001. · Zbl 0989.81065 · doi:10.1088/1126-6708/2001/11/040
[11] S. Parvizi, “Noncommutative instantons and the information metric,” Modern Physics Letters A, vol. 17, no. 6, pp. 341-353, 2002. · Zbl 1083.81599 · doi:10.1142/S0217732302006436
[12] Nikita A. Nekrasov, “Lectures on open strings, and noncommutative gauge fields,” Les Houches 2001, Gravity, gauge theories and strings 477-495, http://arxiv.org/abs/hep-th/0203109.
[13] Y. Tian and C.-J. Zhu, “Instantons on general noncommutative \Bbb R4,” Communications in theoretical physics, vol. 38, no. 6, pp. 691-697, 2002. · Zbl 1267.81247
[14] D. H. Correa, E. F. Moreno, and F. A. Schaposnik, “Some noncommutative multi-instantons from vortices in curved space,” Physics Letters B, vol. 543, no. 3-4, pp. 235-240, 2002. · Zbl 0997.81054 · doi:10.1016/S0370-2693(02)02456-5
[15] F. Franco-Sollova and T. A. Ivanova, “On noncommutative merons and instantons,” Journal of Physics A, vol. 36, no. 14, pp. 4207-4219, 2003. · Zbl 1060.81609 · doi:10.1088/0305-4470/36/14/320
[16] Y. Tian and C.-J. Zhu, “Remarks on the noncommutative Atiyah-Drinfeld-Hitchin-Manin construction,” Physical Review D, vol. 67, no. 4, Article ID 045016, 9 pages, 2003. · doi:10.1103/PhysRevD.67.045016
[17] M. Hamanaka, “Noncommutative solitons and D-branes,” http://arxiv.org/abs/hep-th/0303256. · Zbl 1214.81283
[18] Y. Maeda and A. Sako, “Noncommutative deformation of instantons,” Journal of Geometry and Physics, vol. 58, no. 12, pp. 1784-1791, 2008. · Zbl 1151.53078 · doi:10.1016/j.geomphys.2008.08.006
[19] Y. Maeda and A. Sako, “Noncommutative deformation of spinor zero mode and ADHM construction,” http://arxiv.org/abs/0910.3441. · Zbl 1151.53078 · doi:10.1016/j.geomphys.2008.08.006
[20] Y. Maeda and A. Sako, “Are vortex numbers preserved?” Journal of Geometry and Physics, vol. 58, no. 8, pp. 967-978, 2008. · Zbl 1145.53071 · doi:10.1016/j.geomphys.2008.03.004
[21] A. Sako, “Noncommutative deformation of instantons and vortexes,” Journal of Geometry and Symmetry in Physics, vol. 14, pp. 85-96, 2009. · Zbl 1179.81152
[22] N. A. Nekrasov, “Noncommutative instantons revisited,” Communications in Mathematical Physics, vol. 241, no. 1, pp. 143-160, 2003. · Zbl 1160.81428 · doi:10.1007/s00220-003-0911-8
[23] N. A. Nekrasov, “Trieste lectures on solitons in noncommutative gauge theories,” http://arxiv.org/abs/hep-th/0011095. · Zbl 1024.81045
[24] D. J. Gross and N. A. Nekrasov, “Solitons in noncommutative gauge theory,” Journal of High Energy Physics, vol. 2001, no. 03, article 044, 2001. · doi:10.1088/1126-6708/2001/03/044
[25] T. Ishikawa, S. Kuroki, and A. Sako, “Instanton number on noncommutative \Bbb R4,” Journal of High Energy Physics, vol. 2002, no. 08, article 028, 2002. · Zbl 1059.81162 · doi:10.1088/1126-6708/2002/08/028
[26] A. Sako, “Instanton number of noncommutative U(n) gauge theory,” Journal of High Energy Physics, no. 4, article 023, 2003. · doi:10.1088/1126-6708/2003/04/023
[27] K. Furuuchi, “Instantons on noncommutative \Bbb R4 and projection operators,” Progress of Theoretical Physics, vol. 103, no. 5, pp. 1043-1068, 2000. · doi:10.1143/PTP.103.1043
[28] K. Furuuchi, ““Topological” charge of U(1) instantons on noncommutative \Bbb R4,” Progress of Theoretical Physics Supplement, no. 144, pp. 79-91, 2001. · Zbl 1030.46099 · doi:10.1143/PTPS.144.79
[29] K. Furuuchi, “Equivalence of projections as gauge equivalence on noncommutative space,” Communications in Mathematical Physics, vol. 217, no. 3, pp. 579-593, 2001. · Zbl 1012.81049 · doi:10.1007/PL00005554
[30] Y. Tian, C.-J. Zhu, and X.-C. Song, “Topological charge of noncommutative ADHM instanton,” Modern Physics Letters A, vol. 18, no. 24, pp. 1691-1703, 2003. · Zbl 1076.81534 · doi:10.1142/S0217732303011411
[31] T. Ishikawa, S. I. Kuroki, and A. Sako, “Elongated U(1) instantons on noncommutative \Bbb R4,” Journal of High Energy Physics, vol. 2001, no. 11, article 068, 2001. · doi:10.1088/1126-6708/2001/11/068
[32] A. Sako, “Supersymmetric gauge theory and geometry (Nonperturbative approach),” Nippon-Hyoron-sha, 2007.
[33] K.-Y. Kim, B.-H. Lee, and H. S. Yang, “Zero modes and the Atiyah-Singer index in noncommutative instantons,” Physical Review D, vol. 66, no. 2, Article ID 025034, 11 pages, 2002. · doi:10.1103/PhysRevD.66.025034
[34] B.-H. Lee and H. S. Yang, “Propagators in noncommutative instantons,” Physical Review D, vol. 66, no. 4, Article ID 045027, 14 pages, 2002. · doi:10.1103/PhysRevD.66.045027
[35] O. Lechtenfeld and A. D. Popov, “Noncommutative ’t Hooft instantons,” Journal of High Energy Physics, vol. 2002, no. 03, article 040, 2002. · doi:10.1088/1126-6708/2002/03/040
[36] D. H. Correa, G. Lozano, E. F. Moreno, and F. A. Schaposnik, “Comments on the U(2) noncommutative instanton,” Physics Letters B, vol. 515, no. 1-2, pp. 206-212, 2001. · Zbl 0971.81079 · doi:10.1016/S0370-2693(01)00846-2
[37] Z. Horváth, O. Lechtenfeld, and M. Wolf, “Noncommutative instantons via dressing and splitting approaches,” Journal of High Energy Physics, no. 12, article 060, 2002. · doi:10.1088/1126-6708/2002/12/060
[38] M. Hamanaka and S. Terashima, “On exact noncommutative BPS solitons,” Journal of High Energy Physics, no. 3, article 034, 2001. · doi:10.1088/1126-6708/2001/03/034
[39] J. A. Harvey, P. Kraus, and F. Larsen, “Exact noncommutative solitons,” Journal of High Energy Physics, no. 12, aricle 024, 2000. · Zbl 0990.81547 · doi:10.1088/1126-6708/2000/12/024
[40] M. Hamanaka, “Noncommutative solitons and integrable systems,” http://arxiv.org/abs/hep-th/0504001. · Zbl 1214.81283
[41] J. E. Moyal, “Quantum mechanics as a statistical theory,” Proceedings of the Cambridge Philosophical Society, vol. 45, pp. 99-124, 1949. · Zbl 0031.33601
[42] D. S. Freed and K. K. Uhlenbeck, Instantons and Four-Manifolds, vol. 1 of Mathematical Sciences Research Institute Publications, Springer-Verlag, New York, NY, USA, 1984. · Zbl 0559.57001
[43] E. Corrigan, P. Goddard, and S. Templeton, “Instanton Green’s functions and tensor products,” Nuclear Physics B, vol. 151, no. 1, pp. 93-117, 1979. · doi:10.1016/0550-3213(79)90429-2
[44] E. Corrigan, D. B. Fairlie, S. Templeton, and P. Goddard, “A green’s function for the general selfdual gauge field,” Nuclear Physics B, vol. 140, no. 31, 1978.
[45] N. H. Christ, E. J. Weinberg, and N. K. Stanton, “General self-dual Yang-Mills solutions,” Physical Review D, vol. 18, no. 6, pp. 2013-2025, 1978. · doi:10.1103/PhysRevD.18.2013
[46] V. L. Ginzburg and L. D. Landau, “On the theory of superconductivity,” Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, vol. 20, pp. 1064-1082, 1950.
[47] L. D. Landau and D. Ter Haar, English Translation Men of Physics, vol. 138, Pergamon Oxford, Oxford, UK, 1965.
[48] A. Jaffe and C. Taubes, Vortices and Monopoles: Structure of Static Gauge Theories, vol. 2 of Progress in Physics, Birkhäauser, Boston, Mass, USA, 1980. · Zbl 0457.53034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.