×

Nonlinear analysis for shear augmented dispersion of solutes in blood flow through narrow arteries. (English) Zbl 1251.76069

Summary: The shear augmented dispersion of solutes in blood flow (i) through circular tube and (ii) between parallel flat plates is analyzed mathematically, treating blood as Herschel-Bulkley fluid model. The resulting system of nonlinear differential equations are solved with the appropriate boundary conditions, and the expressions for normalized velocity, concentration of the fluid in the core region and outer region, flow rate, and effective axial diffusivity are obtained. It is found that the normalized velocity of blood, relative diffusivity, and axial diffusivity of solutes are higher when blood is modeled by Herschel-Bulkley fluid rather than by Casson fluid model. It is also noted that the normalized velocity, relative diffusivity, and axial diffusivity of solutes are higher when blood flows through circular tube than when it flows between parallel flat plates.

MSC:

76Z05 Physiological flows
76S05 Flows in porous media; filtration; seepage
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. Agarwal and G. Jayaraman, “Numerical simulation of dispersion in the flow of power law fluids in curved tubes,” Applied Mathematical Modelling, vol. 18, no. 9, pp. 504-512, 1994. · Zbl 0825.76595 · doi:10.1016/0307-904X(94)90329-8
[2] V. Balasubramanian, G. Jayaraman, and S. R. K. Iyengar, “Effect of secondary flows on contaminant dispersion with weak boundary absorption,” Applied Mathematical Modelling, vol. 21, no. 5, pp. 275-285, 1997. · Zbl 0896.76088 · doi:10.1016/S0307-904X(97)00015-2
[3] G. N. Mercer and A. J. Roberts, “A centre manifold description of contaminant dispersion in channels with varying flow properties,” SIAM Journal on Applied Mathematics, vol. 50, no. 6, pp. 1547-1565, 1990. · Zbl 0711.76086 · doi:10.1137/0150091
[4] G. I. Taylor, “Dispersion of soluble matter in solvent flowing slowly through a tube,” Proceedings of the Royal Society A, vol. 219, pp. 186-203, 1953. · doi:10.1098/rspa.1953.0139
[5] E. J. Watson, “Diffusion in oscillatory pipe flow,” Journal of Fluid Mechanics, vol. 133, pp. 233-244, 1983. · Zbl 0543.76120 · doi:10.1017/S0022112083001883
[6] R. Sankarasubramanian and W. N. Gill, “Unsteady convective diffusion with interphase mass transfer,” Proceedings of the Royal Society A, vol. 333, pp. 115-132, 1973. · Zbl 0259.76043 · doi:10.1098/rspa.1973.0051
[7] E. M. Lungu and H. K. Moffatt, “The effect of wall conductance on heat diffusion in duct flow,” Journal of Engineering Mathematics, vol. 16, no. 2, pp. 121-136, 1982. · Zbl 0514.76085 · doi:10.1007/BF00042550
[8] S. Tsangaris and N. Athanassiadis, “Diffusion in oscillatory flow in a pipe,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 65, p. 252, 1985. · Zbl 0571.76087
[9] M. K. Sharp, R. D. Kamm, A. H. Shapiro, E. Kimmel, and G. E. Karniadakis, “Dispersion in a curved tube during oscillatory flow,” Journal of Fluid Mechanics, vol. 223, pp. 537-563, 1991.
[10] A. Ramachandra Rao and K. S. Deshikachar, “An exact analysis of unsteady convective diffusion in an annulus pipe,” Zeitschrift für angewandte Mathematik und Mechanik, vol. 67, no. 3, pp. 189-195, 1987. · Zbl 0617.76098 · doi:10.1002/zamm.19870670315
[11] B. S. Mazumder and S. K. Das, “Effect of boundary reaction on solute dispersion in pulsatile flow through a tube,” Journal of Fluid Mechanics, vol. 239, pp. 523-549, 1992.
[12] M. K. Sharp, “Shear-augmented dispersion in non-Newtonian fluids,” Annals of Biomedical Engineering, vol. 21, no. 4, pp. 407-415, 1993.
[13] Y. Jiang and J. B. Grotberg, “Bolus contaminant dispersion in oscillatory tube flow with conductive walls,” Journal of Biomechanical Engineering, vol. 115, no. 4, pp. 424-431, 1993.
[14] R. Smith and I. Walton, “A Burgers concentration dispersion equation,” Journal of Fluid Mechanics, vol. 239, pp. 65-80, 1992. · Zbl 0754.76081 · doi:10.1017/S0022112092004324
[15] R. K. Dash, G. Jayaraman, and K. N. Mehta, “Shear augmented dispersion of a solute in a Casson fluid flowing in a Conduit,” Annals of Biomedical Engineering, vol. 28, no. 4, pp. 373-385, 2000. · doi:10.1114/1.287
[16] W. N. Gill and R. Sankarasubramanian, “Exact analysis of unsteady convective diffusion,” Proceedings of the Royal Society of London, vol. 316, no. 1526, pp. 341-350, 1970. · Zbl 0197.52704 · doi:10.1098/rspa.1970.0083
[17] D. S. Sankar and U. Lee, “Nonlinear mathematical analysis for blood flow in a constricted artery under periodic body acceleration,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 11, pp. 4390-4402, 2011. · Zbl 1219.92014 · doi:10.1016/j.cnsns.2011.03.020
[18] S. U. Siddiqui, N. K. Verma, S. Mishra, and R. S. Gupta, “Mathematical modelling of pulsatile flow of Casson’s fluid in arterial stenosis,” Applied Mathematics and Computation, vol. 210, no. 1, pp. 1-10, 2009. · Zbl 1159.92012 · doi:10.1016/j.amc.2007.05.070
[19] C. Tu and M. Deville, “Pulsatile flow of Non-Newtonian fluids through arterial stenoses,” Journal of Biomechanics, vol. 29, no. 7, pp. 899-908, 1996. · doi:10.1016/0021-9290(95)00151-4
[20] D. S. Sankar, J. Goh, and A. I. M. Ismail, “FDM analysis for blood flow through stenosed tapered arteries,” Boundary Value Problems, Article ID 917067, 16 pages, 2010. · Zbl 1425.76326
[21] P. Chaturani and V. R. Ponnalagar Samy, “A study of non-Newtonian aspects of blood flow through stenosed arteries and its applications in arterial diseases,” Biorheology, vol. 22, no. 6, pp. 521-531, 1985.
[22] D. S. Sankar and U. Lee, “Mathematical modeling of pulsatile flow of non-Newtonian fluid in stenosed arteries,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 7, pp. 2971-2981, 2009. · Zbl 1221.76271 · doi:10.1016/j.cnsns.2008.10.015
[23] N. Iida, “Influence of plasma layer on steady blood flow in micro vessels,” Japanese Journal of Applied Physics, vol. 17, pp. 203-214, 1978. · doi:10.1143/JJAP.17.203
[24] Y. C. Fung, Biodynamics: Circulation, Springer, New York, NY, USA, 1984.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.