×

Orthogonal stability of an Euler-Lagrange-Jensen \((a, b)\)-cubic functional equation. (English) Zbl 07558439

Summary: In this paper, we introduce a new generalized \((a, b)\)-cubic Euler-Lagrange-Jensen functional equation and obtain its general solution. Furthermore, we prove the Hyers-Ulam stability of the new generalized \((a, b)\)-cubic Euler-Lagrange-Jensen functional equation in orthogonality normed spaces.

MSC:

39B52 Functional equations for functions with more general domains and/or ranges
39B72 Systems of functional equations and inequalities
39B82 Stability, separation, extension, and related topics for functional equations
46B03 Isomorphic theory (including renorming) of Banach spaces
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] I. Chang, Y. Lee & J. Roh: Nearly general septic functional equation. J. Funct. Spaces 2021 (2021), Art. ID 5643145. · Zbl 1480.39028
[2] Y. Ding & Y.Z. Xu: Approximate solution of generalized inhomogeneous radical quadratic functional equations in 2-Banach spaces. J. Inequal. Appl. 2019 (2019), Paper No. 31. · Zbl 07459059
[3] F. Drljevic: On a functional which is quadratic on A-orthogonal vectors. Publ. Inst. Math. (Beograd) 54 (1986), 63-71. · Zbl 0627.46020
[4] M. Fochi: Functional equations in A-orthogonal vectors. Aequationes Math. 38 (1989), 28-40. · Zbl 0679.39006
[5] P. Gavruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436. · Zbl 0818.46043
[6] R. Ger & J. Sikorska: Stability of the orthogonal additivity. Bull. Polish Acad. Sci. Math. 43 (1995), 143-151. · Zbl 0833.39007
[7] V. Govindan, C. Park, S. Pinelas & S. Baskaran: Solution of a 3-D cubic functional equation and its stability. AIMS Math. 5 (2020), 1693-1705. · Zbl 1484.39024
[8] D.H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. 27 (1941), 222-224. · Zbl 0061.26403
[9] K. Jun & H. Kim: On the stability of Euler-Lagrange type cubic mappings in quasi-Banach spaces. J. Math. Anal. Appl. 332 (2007), 1335-1350. · Zbl 1117.39017
[10] S. Jung, D. Popa & M.T. Rassias: On the stability of the linear functional equation in a single variable on complete metric spaces. J. Global Optim. 59 (2014), 13-16.
[11] Y. Lee, S. Jung & M.T. Rassias: Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation. J. Math. Inequal. 12 (2018), 43-61. · Zbl 1412.39028
[12] C. Park & A. Bodaghi: Two multi-cubic functional equations and some results on the stability in modular spaces. J. Inequal. Appl. 2020 (2020), Paper No. 6. · Zbl 07460787
[13] J.M. Rassias: On approximately of approximately linear mappings by linear mappings. J. Funct. Anal. 46 (1982), 126-130. · Zbl 0482.47033
[14] J.M. Rassias: On the stability of the Euler-Lagrange functional equation. Chinese J. Math. 20 (1992), 185-190. · Zbl 0753.39003
[15] J.M. Rassias: Solution of the Ulam stability problem for Euler-Lagrange quadratic mappings. J. Math. Anal. Appl. 220 (1998), 613-639. · Zbl 0928.39014
[16] Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72 (1978), 297-300. · Zbl 0398.47040
[17] K. Ravi, M. Arunkumar & J.M. Rassias: On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation. Int. J. Math. Sci. 3 (2008), no. 8, 36-47. · Zbl 1144.39029
[18] G. Szabo: Sesquilinear-orthogonally quadratic mappings. Aequationes Math. 40 (1990), 190-200. · Zbl 0723.39009
[19] K. Tamilvanan, N. Alessa, K. Loganathan, G. Balasubramanian & N. Namgyel: General solution and satbility of additive-quadratic functional equation in IRN-space. J. Funct. Spaces 2021 (2021), Art. ID 8019135. · Zbl 1473.39044
[20] S.M. Ulam: A Colloection of the Mathematical Problems. Interscience Publ., New York, 1960.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.