Andreatta, F.; Barbieri-Viale, L.; Bertapelle, A.; Kahn, B. Motivic periods and Grothendieck arithmetic invariants. (English) Zbl 1433.14017 Adv. Math. 359, Article ID 106880, 50 p. (2020). Let \(X\) be a separated scheme of finite type over a field \(K\subseteq \mathbb{C}\). If \(X\) is smooth projective, the classical period conjecture of Grothendieck asserts that if \(K=\overline{\mathbb{Q}}\), the cycle map \[ Z^k(X)_{\mathbb{Q}}\to H^{2k}_{dR}(X) \] is surjective over \(H^{2k}(X_{\mathrm{an}},\mathbb{Q}(k))\cap H^{2k}_{dR}(X)\). In other words, that a cohomology class is algebraic if and only if it comes from an algebraic cycle. A detailed history of the conjecture can be found in [J. Ayoub, Eur. Math. Soc. Newsl. 91, 12–18 (2014; Zbl 1306.14006)] and [J.-B. Bost and F. Charles, J. Reine Angew. Math. 714, 175–208 (2016; Zbl 1337.14009)].In the paper under review, the authors formulate an analogue period conjecture for the étale motivic cohomology, removing the assumptions on \(X\).Ayoub’s period isomorphism in Voevodsky’s motivic category \(\mathbf{DM}^{\text{eff}}_{\text{ét}}\) [J. Ayoub, J. Reine Angew. Math. 693, 1–149 (2014; Zbl 1299.14020)] induces, for any scheme \(X\), the isomorphism \[ \varpi^{p,q}_X : H^p(X_{\mathrm{an}},\mathbb{Z}_{\mathrm{an}}(q)) \otimes_\mathbb{Z} \mathbb{C} \to H^p_{dR}(X) \otimes_K \mathbb{C}, \] where \(\mathbb{Z}_{\mathrm{an}}(\bullet)\) is the motivic complex of the analytic category \(\mathbf{DM}^{\text{eff}}_{\mathrm{an}}\), which, following Ayoub [loc. cit.], computes Betti cohomology. The authors consider the following arithmetic invariant \[ H^{p,q}_\varpi(X):=H^p_{dR}(X) \cap H^p(X_{\mathrm{an}},\mathbb{Z}_{\mathrm{an}}(q)) \subseteq H^p(X_{\mathrm{an}},\mathbb{Z}_{\mathrm{an}}(q)) \] and construct a regulator map from the étale motivic cohomology \[ r^{pq}:H^{p,q}(X):=H^p_{\text{éh}}(X,\mathbb{Z}(q))\to H^{p,q}_\varpi(X). \] In this context the analogue of Grothendieck’s period conjecture asserts that if \(K=\overline{\mathbb{Q}}\), the regulator \(r^{p,q}\) is surjective.The main result of this paper is the proof of the latter conjecture in the case \(p=1\) and all \(q\). In order to attack it, the authors rivisit the definitions in terms of 1-motives and make use of the description of \(H^1\) via the motivic Albanese map. The main step becomes showing that a realizaion of 1-motives in a period category, the Betti-de Rham realization, is fully faithful.In the appendix, some divisibility properties of motivic cohomology are proved and used to link this conjecture with the classical period conjecture of Grothendieck for \(X\) smooth and projective. Reviewer: Alberto Merici (Zürich) MSC: 14F42 Motivic cohomology; motivic homotopy theory 14F40 de Rham cohomology and algebraic geometry 19E15 Algebraic cycles and motivic cohomology (\(K\)-theoretic aspects) 14C30 Transcendental methods, Hodge theory (algebro-geometric aspects) 14L15 Group schemes Keywords:motives; periods; motivic and de Rham cohomology Citations:Zbl 1306.14006; Zbl 1337.14009; Zbl 1299.14020 PDF BibTeX XML Cite \textit{F. Andreatta} et al., Adv. Math. 359, Article ID 106880, 50 p. (2020; Zbl 1433.14017) Full Text: DOI arXiv OpenURL References: [1] Achter, J. D.; Casalaina-Martin, S.; Vial, C., Distinguished models of intermediate jacobians, J. Inst. Math. Jussieu, 1-28 (2018), Published online by Cambridge University Press: 08 June 2018 [2] Achter, J. D.; Casalaina-Martin, S.; Vial, C., On descending cohomology geometrically, Compos. Math., 153, 7, 1446-1478 (2017) · Zbl 1370.14039 [3] André, Y., Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses, vol. 17 (2004), Société Mathématique de France: Société Mathématique de France Paris · Zbl 1060.14001 [4] Andreatta, F.; Barbieri-Viale, L.; Bertapelle, A., Ogus realization of 1-motives, J. Algebra, 487, 294-316 (2017) · Zbl 1401.14109 [5] Ayoub, J., Note sur les opérations de Grothendieck et la réalisation de Betti, J. Inst. Math. Jussieu, 9, 2, 225-263 (2010) · Zbl 1202.14018 [6] Ayoub, J., A guide to (étale) motivic sheaves, (Proceedings of the International Congress of Mathematicians—Seoul 2014, Vol. II (2014), Kyung Moon Sa: Kyung Moon Sa Seoul), 1101-1124 · Zbl 1373.14009 [7] Ayoub, J., L’algèbre de Hopf et le groupe de Galois motiviques d’un corps de caractéristique nulle, I, J. Reine Angew. Math., 693, 1-149 (2014) · Zbl 1299.14020 [8] Ayoub, J., L’algèbre de Hopf et le groupe de Galois motiviques d’un corps de caractéristique nulle, II, J. Reine Angew. Math., 693, 151-226 (2014) · Zbl 1299.14022 [9] Ayoub, J., Une version relative de la conjecture des périodes de Kontsevich-Zagier, Ann. of Math. (2), 181, 3, 905-992 (2015) · Zbl 1408.32016 [10] Ayoub, J.; Barbieri-Viale, L., 1-motivic sheaves and the Albanese functor, J. Pure Appl. Algebra, 213, 5, 809-839 (2009) · Zbl 1163.14003 [11] Barbieri-Viale, L.; Bertapelle, A., Sharp de Rham realization, Adv. Math., 222, 4, 1308-1338 (2009) · Zbl 1216.14006 [12] Barbieri-Viale, L.; Kahn, B., On the derived category of 1-motives, Astérisque, 381 (2016), xi+254 · Zbl 1356.19001 [13] Barbieri-Viale, L.; Rosenschon, A.; Saito, M., Deligne’s conjecture on 1-motives, Ann. of Math. (2), 158, 2, 593-633 (2003) · Zbl 1124.14014 [14] Bertapelle, A., Deligne’s duality for de Rham realizations of 1-motives, Math. Nachr., 282, 12, 1637-1655 (2009) · Zbl 1182.14010 [15] Bloch, S., Torsion algebraic cycles and a theorem of Roitman, Compos. Math., 39, 1, 107-127 (1979) · Zbl 0463.14002 [16] Bost, J.-B., Algebraization, transcendence, and D-group schemes, Notre Dame J. Form. Log., 54, 3-4, 377-434 (2013) · Zbl 1355.11074 [17] Bost, J.-B.; Charles, F., Some remarks concerning the Grothendieck period conjecture, J. Reine Angew. Math., 714, 175-208 (2016) · Zbl 1337.14009 [18] Colliot-Thélène, J.-L.; Hoobler, R. T.; Kahn, B., The Bloch-Ogus-Gabber theorem, (Algebraic K-Theory. Algebraic K-Theory, Toronto, ON, 1996. Algebraic K-Theory. Algebraic K-Theory, Toronto, ON, 1996, Fields Inst. Commun, vol. 16 (1997), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 31-94 · Zbl 0911.14004 [19] Colliot-Thélène, J.-L.; Raskind, W., K2-cohomology and the second Chow group, Math. Ann., 270, 2, 165-199 (1985) · Zbl 0536.14004 [20] de Jeu, R.; Lewis, J. D., Beilinson’s Hodge conjecture for smooth varieties, J. K-Theory, 11, 2, 243-282 (2013), With an appendix by Masanori Asakura · Zbl 1300.14009 [21] Deligne, P., Théorèmes d’intégralité, (Groupes de monodromie en géométrie algébrique (SGA7), Vol. II. Groupes de monodromie en géométrie algébrique (SGA7), Vol. II, Lecture Notes in Mathematics, vol. 340 (1973), Springer-Verlag: Springer-Verlag Berlin-Heidelberg), 363-400, Appendix to N. Katz Le niveau de la cohomologie des intersections complètes, exposé XXI [22] Deligne, P., La conjecture de Weil. I, Publ. Math. Inst. Hautes Etudes Sci., 43, 273-307 (1974) · Zbl 0287.14001 [23] Deligne, P., Théorie de Hodge. III, Publ. Math. Inst. Hautes Etudes Sci., 44, 5-77 (1974) · Zbl 0237.14003 [24] Deligne, P., La conjecture de Weil. II, Publ. Math. Inst. Hautes Etudes Sci., 52, 137-252 (1980) · Zbl 0456.14014 [25] Gabber, O., Sur la torsion dans la cohomologie l-adique d’une variété, C. R. Acad. Sci. Paris Sér. I Math., 297, 3, 179-182 (1983) · Zbl 0574.14019 [26] Geisser, T.; Levine, M., The K-theory of fields in characteristic p, Invent. Math., 139, 3, 459-493 (2000) · Zbl 0957.19003 [27] Geisser, T.; Levine, M., The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, J. Reine Angew. Math., 530, 55-103 (2001) · Zbl 1023.14003 [28] Grayson, D. R., Universal exactness in algebraic K-theory, J. Pure Appl. Algebra, 36, 2, 139-141 (1985) · Zbl 0558.18007 [29] Grothendieck, A., Le groupe de Brauer. II. Théorie cohomologique, (Séminaire Bourbaki: années 1964/1965, 1965/1966, exposés 277-312, vol. 9 (1966), Société mathématique de France), 287-307, Exposé 297 [30] Grothendieck, A., On the de Rham cohomology of algebraic varieties, Publ. Math. Inst. Hautes Etudes Sci., 29, 95-103 (1966) · Zbl 0145.17602 [31] Haesemeyer, C.; Weibel, C. A., The Norm Residue Theorem in Motivic Cohomology, Annals of Mathematics Studies, vol. 200 (2019), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1433.14001 [32] Huber, A., Galois theory of periods (2018) [33] Huber, A.; Müller-Stach, S., Periods and Nori Motives, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A, Series of Modern Surveys in Mathematics, vol. 65 (2017), Springer: Springer Cham, With contributions by Benjamin Friedrich and Jonas von Wangenheim · Zbl 1369.14001 [34] Huber, A.; Wüstholz, G., Transcendence and linear relations of 1-periods (2019) [35] Jouanolou, J.-P., Cohomologie l-adique, (Cohomologie l-adique et Fonctions L, Séminaire de Géometrie Algébrique du Bois-Marie 1965-1966 (SGA 5). Cohomologie l-adique et Fonctions L, Séminaire de Géometrie Algébrique du Bois-Marie 1965-1966 (SGA 5), Lecture Notes in Mathematics, vol. 589 (1977), Springer-Verlag: Springer-Verlag Berlin-New York), 251-281, Exp. VI · Zbl 0352.14009 [36] Kahn, B., The Geisser-Levine method revisited, Preliminary version to [38], K-theory preprint archives 438 · Zbl 1014.14004 [37] Kahn, B., La conjecture de Milnor (d’après V. Voevodsky), (Séminaire Bourbaki: volume 1996/1997, exposés 820-834. Séminaire Bourbaki: volume 1996/1997, exposés 820-834, Astérisque, vol. 245 (1997), Société mathématique de France), 379-418, Exposé 834 · Zbl 0916.19001 [38] Kahn, B., The Geisser-Levine method revisited and algebraic cycles over a finite field, Math. Ann., 324, 3, 581-617 (2002) · Zbl 1014.14004 [39] Kahn, B., K-theory of semi-local rings with finite coefficients and étale cohomology, K-Theory, 25, 2, 99-138 (2002) · Zbl 1013.19001 [40] Kahn, B., Some finiteness results for étale cohomology, J. Number Theory, 99, 1, 57-73 (2003) · Zbl 1055.14018 [41] Kahn, B., Classes de cycles motiviques étales, Algebra Number Theory, 6, 7, 1369-1407 (2012) · Zbl 1263.14011 [42] Kahn, B., The Brauer group and indecomposable (2,1)-cycles, Compos. Math., 152, 5, 1041-1051 (2016) · Zbl 1375.19008 [43] Lang, S., Transcendental points on group varieties, Topology, 1, 313-318 (1962) · Zbl 0116.38105 [44] Lecomte, F.; Wach, N., Le complexe motivique de Rham, Manuscripta Math., 129, 1, 75-90 (2009) · Zbl 1190.14020 [45] Lecomte, F.; Wach, N., Réalisation de Hodge des motifs de Voevodsky, Manuscripta Math., 141, 3-4, 663-697 (2013) · Zbl 1284.14014 [46] Levine, M., K-theory and motivic cohomology of schemes (1999), preprint [47] Mazza, C.; Voevodsky, V.; Weibel, C., Lecture Notes on Motivic Cohomology, Clay Mathematics Monographs, vol. 2 (2006), American Mathematical Society/Clay Mathematics Institute: American Mathematical Society/Clay Mathematics Institute Providence, RI/Cambridge, MA · Zbl 1115.14010 [48] Merkurjev, A. S.; Suslin, A. A., K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat., 46, 5, 1011-1046 (1982), 1135-1136 [49] Rosenschon, A.; Srinivas, V., Étale motivic cohomology and algebraic cycles, J. Inst. Math. Jussieu, 15, 3, 511-537 (2016) · Zbl 1346.19004 [50] Suslin, A.; Voevodsky, V., Bloch-Kato conjecture and motivic cohomology with finite coefficients, (The Arithmetic and Geometry of Algebraic Cycles. The Arithmetic and Geometry of Algebraic Cycles, Banff, AB, 1998. The Arithmetic and Geometry of Algebraic Cycles. The Arithmetic and Geometry of Algebraic Cycles, Banff, AB, 1998, NATO Sci. Ser. C Math. Phys. Sci., vol. 548 (2000), Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht), 117-189 · Zbl 1005.19001 [51] Voevodsky, V., Cancellation theorem, Doc. Math., Andrei A. Suslin sixtieth birthday, 671-685 (2010) · Zbl 1202.14022 [52] Voevodsky, V., On motivic cohomology with Z/l-coefficients, Ann. of Math. (2), 174, 1, 401-438 (2011) · Zbl 1236.14026 [53] Vologodsky, V., Hodge realizations of 1-motives and the derived Albanese, J. K-Theory, 10, 2, 371-412 (2012) · Zbl 1267.14030 [54] Waldschmidt, M., Nombres transcendants et groupes algébriques, Astérisque, vol. 69 (1979), Société Mathématique de France: Société Mathématique de France Paris · Zbl 0428.10017 [55] Weibel, C. A., Pic is a contracted functor, Invent. Math., 103, 1, 351-377 (1991) · Zbl 0794.13008 [56] Wüstholz, G., Some remarks on a conjecture of Waldschmidt, (Diophantine Approximations and Transcendental Numbers. Diophantine Approximations and Transcendental Numbers, Luminy, 1982. Diophantine Approximations and Transcendental Numbers. Diophantine Approximations and Transcendental Numbers, Luminy, 1982, Progr. Math., vol. 31 (1983), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 329-336 [57] Wüstholz, G., Leibniz’ conjecture, periods & motives, (Colloquium De Giorgi 2009. Colloquium De Giorgi 2009, Colloquia, vol. 3 (2012), Ed. Norm: Ed. Norm Pisa), 33-42 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.